Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study

Bibliographic Details
Title: Deep phenotyping of 34,128 adult patients hospitalised with COVID-19 in an international network study
Authors: Edward Burn, Seng Chan You, Anthony G. Sena, Kristin Kostka, Hamed Abedtash, Maria Tereza F. Abrahão, Amanda Alberga, Heba Alghoul, Osaid Alser, Thamir M. Alshammari, Maria Aragon, Carlos Areia, Juan M. Banda, Jaehyeong Cho, Aedin C. Culhane, Alexander Davydov, Frank J. DeFalco, Talita Duarte-Salles, Scott DuVall, Thomas Falconer, Sergio Fernandez-Bertolin, Weihua Gao, Asieh Golozar, Jill Hardin, George Hripcsak, Vojtech Huser, Hokyun Jeon, Yonghua Jing, Chi Young Jung, Benjamin Skov Kaas-Hansen, Denys Kaduk, Seamus Kent, Yeesuk Kim, Spyros Kolovos, Jennifer C. E. Lane, Hyejin Lee, Kristine E. Lynch, Rupa Makadia, Michael E. Matheny, Paras P. Mehta, Daniel R. Morales, Karthik Natarajan, Fredrik Nyberg, Anna Ostropolets, Rae Woong Park, Jimyung Park, Jose D. Posada, Albert Prats-Uribe, Gowtham Rao, Christian Reich, Yeunsook Rho, Peter Rijnbeek, Lisa M. Schilling, Martijn Schuemie, Nigam H. Shah, Azza Shoaibi, Seokyoung Song, Matthew Spotnitz, Marc A. Suchard, Joel N. Swerdel, David Vizcaya, Salvatore Volpe, Haini Wen, Andrew E. Williams, Belay B. Yimer, Lin Zhang, Oleg Zhuk, Daniel Prieto-Alhambra, Patrick Ryan
Source: Nature Communications, Vol 11, Iss 1, Pp 1-11 (2020)
Publisher Information: Nature Portfolio, 2020.
Publication Year: 2020
Collection: LCC:Science
Subject Terms: Science
More Details: Detailed knowledge of the characteristics of COVID-19 patients helps with public health planning. Here, the authors use routinely-collected data from seven databases in three countries to describe the characteristics of >30,000 patients admitted with COVID-19 and compare them with those admitted for influenza in previous years.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-020-18849-z
Access URL: https://doaj.org/article/cfa5ce1ceb5b40e2835e784a7ff0057c
Accession Number: edsdoj.fa5ce1ceb5b40e2835e784a7ff0057c
Database: Directory of Open Access Journals
More Details
ISSN:20411723
DOI:10.1038/s41467-020-18849-z
Published in:Nature Communications
Language:English