Empirical ways to identify novel Bedaquiline resistance mutations in AtpE.

Bibliographic Details
Title: Empirical ways to identify novel Bedaquiline resistance mutations in AtpE.
Authors: Malancha Karmakar, Carlos H M Rodrigues, Kathryn E Holt, Sarah J Dunstan, Justin Denholm, David B Ascher
Source: PLoS ONE, Vol 14, Iss 5, p e0217169 (2019)
Publisher Information: Public Library of Science (PLoS), 2019.
Publication Year: 2019
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a novel mechanism of action in over 40 years, has already been detected in Mycobacterium tuberculosis. As a new drug, however, there is currently insufficient clinical data to facilitate reliable and timely identification of genomic determinants of resistance. Here we investigate the structural basis for M. tuberculosis associated bedaquiline resistance in the drug target, AtpE. Together with the 9 previously identified resistance-associated variants in AtpE, 54 non-resistance-associated mutations were identified through comparisons of bedaquiline susceptibility across 23 different mycobacterial species. Computational analysis of the structural and functional consequences of these variants revealed that resistance associated variants were mainly localized at the drug binding site, disrupting key interactions with bedaquiline leading to reduced binding affinity. This was used to train a supervised predictive algorithm, which accurately identified likely resistance mutations (93.3% accuracy). Application of this model to circulating variants present in the Asia-Pacific region suggests that current circulating variants are likely to be susceptible to bedaquiline. We have made this model freely available through a user-friendly web interface called SUSPECT-BDQ, StrUctural Susceptibility PrEdiCTion for bedaquiline (http://biosig.unimelb.edu.au/suspect_bdq/). This tool could be useful for the rapid characterization of novel clinical variants, to help guide the effective use of bedaquiline, and to minimize the spread of clinical resistance.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1932-6203
Relation: https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0217169
Access URL: https://doaj.org/article/f760139f04a74740bd4baa6c42129654
Accession Number: edsdoj.f760139f04a74740bd4baa6c42129654
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0217169
Published in:PLoS ONE
Language:English