Academic Journal
Empirical ways to identify novel Bedaquiline resistance mutations in AtpE.
Title: | Empirical ways to identify novel Bedaquiline resistance mutations in AtpE. |
---|---|
Authors: | Malancha Karmakar, Carlos H M Rodrigues, Kathryn E Holt, Sarah J Dunstan, Justin Denholm, David B Ascher |
Source: | PLoS ONE, Vol 14, Iss 5, p e0217169 (2019) |
Publisher Information: | Public Library of Science (PLoS), 2019. |
Publication Year: | 2019 |
Collection: | LCC:Medicine LCC:Science |
Subject Terms: | Medicine, Science |
More Details: | Clinical resistance against Bedaquiline, the first new anti-tuberculosis compound with a novel mechanism of action in over 40 years, has already been detected in Mycobacterium tuberculosis. As a new drug, however, there is currently insufficient clinical data to facilitate reliable and timely identification of genomic determinants of resistance. Here we investigate the structural basis for M. tuberculosis associated bedaquiline resistance in the drug target, AtpE. Together with the 9 previously identified resistance-associated variants in AtpE, 54 non-resistance-associated mutations were identified through comparisons of bedaquiline susceptibility across 23 different mycobacterial species. Computational analysis of the structural and functional consequences of these variants revealed that resistance associated variants were mainly localized at the drug binding site, disrupting key interactions with bedaquiline leading to reduced binding affinity. This was used to train a supervised predictive algorithm, which accurately identified likely resistance mutations (93.3% accuracy). Application of this model to circulating variants present in the Asia-Pacific region suggests that current circulating variants are likely to be susceptible to bedaquiline. We have made this model freely available through a user-friendly web interface called SUSPECT-BDQ, StrUctural Susceptibility PrEdiCTion for bedaquiline (http://biosig.unimelb.edu.au/suspect_bdq/). This tool could be useful for the rapid characterization of novel clinical variants, to help guide the effective use of bedaquiline, and to minimize the spread of clinical resistance. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 1932-6203 |
Relation: | https://doaj.org/toc/1932-6203 |
DOI: | 10.1371/journal.pone.0217169 |
Access URL: | https://doaj.org/article/f760139f04a74740bd4baa6c42129654 |
Accession Number: | edsdoj.f760139f04a74740bd4baa6c42129654 |
Database: | Directory of Open Access Journals |
Full text is not displayed to guests. | Login for full access. |
ISSN: | 19326203 |
---|---|
DOI: | 10.1371/journal.pone.0217169 |
Published in: | PLoS ONE |
Language: | English |