Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury

Bibliographic Details
Title: Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury
Authors: Jiewen Chen, Xiaolin Zeng, Le Wang, Wenwu Zhang, Gang Li, Xing Cheng, Peiqiang Su, Yong Wan, Xiang Li
Source: Neural Regeneration Research, Vol 20, Iss 2, Pp 557-573 (2025)
Publisher Information: Wolters Kluwer Medknow Publications, 2025.
Publication Year: 2025
Collection: LCC:Neurology. Diseases of the nervous system
Subject Terms: astrocytes, axl, cell polarization, gas6, hippo signal, inflammatory micro-environment, intercellular interaction, microglia, single-cell sequencing, spinal cord injury, Neurology. Diseases of the nervous system, RC346-429
More Details: Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1673-5374
1876-7958
Relation: https://journals.lww.com/10.4103/NRR.NRR-D-23-01130; https://doaj.org/toc/1673-5374; https://doaj.org/toc/1876-7958
DOI: 10.4103/NRR.NRR-D-23-01130
Access URL: https://doaj.org/article/df3dc90d1f2d4fb19cd79f9d74f0fbca
Accession Number: edsdoj.f3dc90d1f2d4fb19cd79f9d74f0fbca
Database: Directory of Open Access Journals
More Details
ISSN:16735374
18767958
DOI:10.4103/NRR.NRR-D-23-01130
Published in:Neural Regeneration Research
Language:English