BAP1 promotes osteoclast function by metabolic reprogramming

Bibliographic Details
Title: BAP1 promotes osteoclast function by metabolic reprogramming
Authors: Nidhi Rohatgi, Wei Zou, Yongjia Li, Kevin Cho, Patrick L. Collins, Eric Tycksen, Gaurav Pandey, Carl J. DeSelm, Gary J. Patti, Anwesha Dey, Steven L. Teitelbaum
Source: Nature Communications, Vol 14, Iss 1, Pp 1-16 (2023)
Publisher Information: Nature Portfolio, 2023.
Publication Year: 2023
Collection: LCC:Science
Subject Terms: Science
More Details: Abstract Treatment of osteoporosis commonly diminishes osteoclast number which suppresses bone formation thus compromising fracture prevention. Bone formation is not suppressed, however, when bone degradation is reduced by retarding osteoclast functional resorptive capacity, rather than differentiation. We find deletion of deubiquitinase, BRCA1-associated protein 1 (Bap1), in myeloid cells (Bap1 ∆LysM ), arrests osteoclast function but not formation. Bap1 ∆LysM osteoclasts fail to organize their cytoskeleton which is essential for bone degradation consequently increasing bone mass in both male and female mice. The deubiquitinase activity of BAP1 modifies osteoclast function by metabolic reprogramming. Bap1 deficient osteoclast upregulate the cystine transporter, Slc7a11, by enhanced H2Aub occupancy of its promoter. SLC7A11 controls cellular reactive oxygen species levels and redirects the mitochondrial metabolites away from the tricarboxylic acid cycle, both being necessary for osteoclast function. Thus, in osteoclasts BAP1 appears to regulate the epigenetic-metabolic axis and is a potential target to reduce bone degradation while maintaining osteogenesis in osteoporotic patients.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-023-41629-4
Access URL: https://doaj.org/article/cccf1d8177fb4ec0a2c526ee79cec6f1
Accession Number: edsdoj.f1d8177fb4ec0a2c526ee79cec6f1
Database: Directory of Open Access Journals
More Details
ISSN:20411723
DOI:10.1038/s41467-023-41629-4
Published in:Nature Communications
Language:English