Lightweight Improved YOLOv5s-CGhostnet for Detection of Strawberry Maturity Levels and Counting

Bibliographic Details
Title: Lightweight Improved YOLOv5s-CGhostnet for Detection of Strawberry Maturity Levels and Counting
Authors: Niraj Tamrakar, Sijan Karki, Myeong Yong Kang, Nibas Chandra Deb, Elanchezhian Arulmozhi, Dae Yeong Kang, Junghoo Kook, Hyeon Tae Kim
Source: AgriEngineering, Vol 6, Iss 2, Pp 962-978 (2024)
Publisher Information: MDPI AG, 2024.
Publication Year: 2024
Collection: LCC:Agriculture (General)
LCC:Engineering (General). Civil engineering (General)
Subject Terms: CBAM, ghost module, loss function, strawberry, YOLOv5, Agriculture (General), S1-972, Engineering (General). Civil engineering (General), TA1-2040
More Details: A lightweight strawberry detection and localization algorithm plays a crucial role in enabling the harvesting robot to effectively harvest strawberries. The YOLO model has often been used in strawberry fruit detection for its high accuracy, speed, and robustness. However, some challenges exist, such as the requirement for large model sizes, high computation operation, and undesirable detection. Therefore, the lightweight improved YOLOv5s-CGhostnet was proposed to enhance strawberry detection. In this study, YOLOv5s underwent comprehensive model compression with Ghost modules GCBS and GC3, replacing modules CBS and C3 in the backbone and neck. Furthermore, the default GIOU bounding box regressor loss function was replaced by SIOU for improved localization. Similarly, CBAM attention modules were added before SPPF and between the up-sampling and down-sampling feature fusion FPN–PAN network in the neck section. The improved model exhibited higher mAP@0.5 of 91.7% with a significant decrement in model size by 85.09% and a reduction in GFLOPS by 88.5% compared to the baseline model of YOLOv5. The model demonstrated an increment in mean average precision, a decrement in model size, and reduced computation overhead compared to the standard lightweight YOLO models.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2624-7402
Relation: https://www.mdpi.com/2624-7402/6/2/55; https://doaj.org/toc/2624-7402
DOI: 10.3390/agriengineering6020055
Access URL: https://doaj.org/article/be2f2bb7911d4d218aaa96dd9858d030
Accession Number: edsdoj.be2f2bb7911d4d218aaa96dd9858d030
Database: Directory of Open Access Journals
More Details
ISSN:26247402
DOI:10.3390/agriengineering6020055
Published in:AgriEngineering
Language:English