Study on the impact of HTPP fibers on the mechanical properties of ceramsite concrete

Bibliographic Details
Title: Study on the impact of HTPP fibers on the mechanical properties of ceramsite concrete
Authors: Hongjian Lin, Bingjian Zhu, Ji Yuan, Haijie He, Ruige Li, Jing Yu, Xinyu Shen, Chuang He, Junding Liu, Wen Xu
Source: Case Studies in Construction Materials, Vol 19, Iss , Pp e02471- (2023)
Publisher Information: Elsevier, 2023.
Publication Year: 2023
Collection: LCC:Materials of engineering and construction. Mechanics of materials
Subject Terms: HTPP fibers, Ceramsite concrete, Strength, Toughness, Failure mode, Mechanism of action, Materials of engineering and construction. Mechanics of materials, TA401-492
More Details: In this paper, the effect of High-Toughness Polypropylene (HTPP) fibers admixture (0, 0.3 %, 0.6 %, 0.9 %) on the mechanical properties of ceramsite concrete was investigated, and four kinds of ceramsite concrete specimens were prepared and tested for various kinds of ceramsite concrete compressive strength, flexural strength, and stress-strain curves, and the performance characteristics obtained include the strength-to-weight ratio, flexural-to-compressive ratio, tensile-to-compressive ratio, compressive toughness index, and failure morphology. Furthermore, combined with Scanning Electron Microscope (SEM) images, we analyzed the enhancement mechanism of basic mechanical properties of ceramic concrete by HTPP fibers. The results show that HTPP fibers can effectively improve the strength and toughness performance of ceramsite concrete, and the effect on improving toughness performance is more significant; After adding HTPP fibers, the compressive strength of ceramsite concrete increased by 26.3 %, the flexural strength increased by 29.7 %, the toughness index increased by 28.9 %, and the strength to weight ratio increased by 24.1 %; After adding HTPP fibers, the brittle failure characteristics of concrete are significantly weakened, and when it fails under load, it can still maintain good integrity, without scattering or continuous cracking. Based on the SEM test results, the mechanism of HTPP fibers reinforced ceramsite concrete was explained, mainly attributed to three aspects: fibers preventing ceramsite from floating, fiber surface maintaining good bonding with cement matrix, and effective synergistic bearing between fibers and ceramsite concrete. The research findings of this study can provide a theoretical foundation for the structural analysis and design of this type of concrete. It will be beneficial for the use of ceramsite concrete as a structural material and holds significant implications for the advancement of prefabricated lightweight wall panels.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2214-5095
Relation: http://www.sciencedirect.com/science/article/pii/S2214509523006514; https://doaj.org/toc/2214-5095
DOI: 10.1016/j.cscm.2023.e02471
Access URL: https://doaj.org/article/be2437520c33434382ddc0a4da8249eb
Accession Number: edsdoj.be2437520c33434382ddc0a4da8249eb
Database: Directory of Open Access Journals
More Details
ISSN:22145095
DOI:10.1016/j.cscm.2023.e02471
Published in:Case Studies in Construction Materials
Language:English