On the denominators of harmonic numbers. IV
Title: | On the denominators of harmonic numbers. IV |
---|---|
Authors: | Wu, Bing-Ling, Yan, Xiao-Hui |
Source: | Comptes Rendus. Mathématique, Vol 360, Iss G1, Pp 53-57 (2022) |
Publisher Information: | Académie des sciences, 2022. |
Publication Year: | 2022 |
Collection: | LCC:Mathematics |
Subject Terms: | harmonic numbers, least common multiples, upper asymptotic density, Mathematics, QA1-939 |
More Details: | Let $\mathcal{L}$ be the set of all positive integers $n$ such that the denominator of $1+1/2+\cdots +1/n$ is less than the least common multiple of $1, 2, \dots , n$. In this paper, under a certain assumption on linear independence, we prove that the set $\mathcal{L}$ has the upper asymptotic density $1$. The assumption follows from Schanuel’s conjecture. |
Document Type: | article |
File Description: | electronic resource |
Language: | English French |
ISSN: | 1778-3569 |
Relation: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.282/; https://doaj.org/toc/1778-3569 |
DOI: | 10.5802/crmath.282 |
Access URL: | https://doaj.org/article/dbe0a600aa714edf8842b3675171c813 |
Accession Number: | edsdoj.be0a600aa714edf8842b3675171c813 |
Database: | Directory of Open Access Journals |
ISSN: | 17783569 |
---|---|
DOI: | 10.5802/crmath.282 |
Published in: | Comptes Rendus. Mathématique |
Language: | English French |