On the denominators of harmonic numbers. IV

Bibliographic Details
Title: On the denominators of harmonic numbers. IV
Authors: Wu, Bing-Ling, Yan, Xiao-Hui
Source: Comptes Rendus. Mathématique, Vol 360, Iss G1, Pp 53-57 (2022)
Publisher Information: Académie des sciences, 2022.
Publication Year: 2022
Collection: LCC:Mathematics
Subject Terms: harmonic numbers, least common multiples, upper asymptotic density, Mathematics, QA1-939
More Details: Let $\mathcal{L}$ be the set of all positive integers $n$ such that the denominator of $1+1/2+\cdots +1/n$ is less than the least common multiple of $1, 2, \dots , n$. In this paper, under a certain assumption on linear independence, we prove that the set $\mathcal{L}$ has the upper asymptotic density $1$. The assumption follows from Schanuel’s conjecture.
Document Type: article
File Description: electronic resource
Language: English
French
ISSN: 1778-3569
Relation: https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.282/; https://doaj.org/toc/1778-3569
DOI: 10.5802/crmath.282
Access URL: https://doaj.org/article/dbe0a600aa714edf8842b3675171c813
Accession Number: edsdoj.be0a600aa714edf8842b3675171c813
Database: Directory of Open Access Journals
More Details
ISSN:17783569
DOI:10.5802/crmath.282
Published in:Comptes Rendus. Mathématique
Language:English
French