Stress analysis and risk of failure during clenching in ceramic assembly models: 3-dimensional finite element analysis

Bibliographic Details
Title: Stress analysis and risk of failure during clenching in ceramic assembly models: 3-dimensional finite element analysis
Authors: Ting-Hsun Lan, Alex Siu Lun Fok, Chun-Cheng Hung, Je-Kang Du, Chih-Te Liu, Jeh-Hao Chen
Source: Journal of Dental Sciences, Vol 18, Iss 2, Pp 791-800 (2023)
Publisher Information: Elsevier, 2023.
Publication Year: 2023
Collection: LCC:Dentistry
Subject Terms: CAD/CAM, Clenching, FEA, Maximum principal stress, Dentistry, RK1-715
More Details: Background/purpose: Clenching is a dental parafunctional disorder that jeopardizes the life of teeth and/or dental prostheses. Computer-aided design and computer-aided manufacturing (CAD/CAM)–fabricated or 3-dimensional-printed dental prostheses are aesthetic, strong, and of good quality, but noticeable damage can still be observed after clenching. Stress analysis of synthetic ceramic assemblies with various parameters was conducted to provide data that may be used to improve the fabrication of CAD/CAM–fabricated dental prostheses. Materials and methods: Abaqus software was used to run the simulations. A total of 96 axisymmetric finite element ceramic assembly models were simulated under 800 N vertical loading and different contact radii (0.25, 0.5, 0.75, 1.0 mm), materials (IPS e.max CAD and Vita Enamic), layer thicknesses and combinations. Results: Four-layered ceramic assembly models produced promising results with the following parameters: contact radius of at least 0.5 mm, total thickness of at least 0.5 mm, and use of IPS e.max CAD as the first layer and Vita Enamic as the second layer without cement. Conclusion: The ideal four-layered assembly model design uses 0.25-mm-thick IPS e.max CAD as its outer layer to simulate enamel binding and 0.25-mm-thick Vita Enamic as its inner layer to imitate the natural tooth. This design may be used as reference for prosthodontic treatment.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1991-7902
Relation: http://www.sciencedirect.com/science/article/pii/S1991790223000156; https://doaj.org/toc/1991-7902
DOI: 10.1016/j.jds.2023.01.015
Access URL: https://doaj.org/article/b66b1ce7fc34469fa4bfc381ac4ad53d
Accession Number: edsdoj.b66b1ce7fc34469fa4bfc381ac4ad53d
Database: Directory of Open Access Journals
More Details
ISSN:19917902
DOI:10.1016/j.jds.2023.01.015
Published in:Journal of Dental Sciences
Language:English