Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy

Bibliographic Details
Title: Genetic inhibition of CARD9 accelerates the development of atherosclerosis in mice through CD36 dependent-defective autophagy
Authors: Yujiao Zhang, Marie Vandestienne, Jean-Rémi Lavillegrand, Jeremie Joffre, Icia Santos-Zas, Aonghus Lavelle, Xiaodan Zhong, Wilfried Le Goff, Maryse Guérin, Rida Al-Rifai, Ludivine Laurans, Patrick Bruneval, Coralie Guérin, Marc Diedisheim, Melanie Migaud, Anne Puel, Fanny Lanternier, Jean-Laurent Casanova, Clément Cochain, Alma Zernecke, Antoine-Emmanuel Saliba, Michal Mokry, Jean-Sebastien Silvestre, Alain Tedgui, Ziad Mallat, Soraya Taleb, Olivia Lenoir, Cécile Vindis, Stéphane M. Camus, Harry Sokol, Hafid Ait-Oufella
Source: Nature Communications, Vol 14, Iss 1, Pp 1-17 (2023)
Publisher Information: Nature Portfolio, 2023.
Publication Year: 2023
Collection: LCC:Science
Subject Terms: Science
More Details: Abstract Caspase recruitment-domain containing protein 9 (CARD9) is a key signaling pathway in macrophages but its role in atherosclerosis is still poorly understood. Global deletion of Card9 in Apoe -/- mice as well as hematopoietic deletion in Ldlr -/- mice increases atherosclerosis. The acceleration of atherosclerosis is also observed in Apoe -/- Rag2 -/- Card9 -/- mice, ruling out a role for the adaptive immune system in the vascular phenotype of Card9 deficient mice. Card9 deficiency alters macrophage phenotype through CD36 overexpression with increased IL-1β production, increased lipid uptake, higher cell death susceptibility and defective autophagy. Rapamycin or metformin, two autophagy inducers, abolish intracellular lipid overload, restore macrophage survival and autophagy flux in vitro and finally abolish the pro-atherogenic effects of Card9 deficiency in vivo. Transcriptomic analysis of human CARD9-deficient monocytes confirms the pathogenic signature identified in murine models. In summary, CARD9 is a key protective pathway in atherosclerosis, modulating macrophage CD36-dependent inflammatory responses, lipid uptake and autophagy.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-023-40216-x
Access URL: https://doaj.org/article/b269b498eb06438890385181c12ba8bb
Accession Number: edsdoj.b269b498eb06438890385181c12ba8bb
Database: Directory of Open Access Journals
More Details
ISSN:20411723
DOI:10.1038/s41467-023-40216-x
Published in:Nature Communications
Language:English