Elucidating dynamic conductive state changes in amorphous lithium lanthanum titanate for resistive switching devices

Bibliographic Details
Title: Elucidating dynamic conductive state changes in amorphous lithium lanthanum titanate for resistive switching devices
Authors: Ryosuke Shimizu, Diyi Cheng, Guomin Zhu, Bing Han, Thomas S. Marchese, Randall Burger, Mingjie Xu, Xiaoqing Pan, Minghao Zhang, Ying Shirley Meng
Source: Next Materials, Vol 2, Iss , Pp 100102- (2024)
Publisher Information: Elsevier, 2024.
Publication Year: 2024
Collection: LCC:Technology
Subject Terms: Solid electrolyte, Resistive Switching, Li-ion battery, Oxygen vacancy, Technology
More Details: Exploration of novel resistive switching materials attracts attention to achieve neuromorphic computing that can surpass the limit of the current Von-Neumann computing for the time of Internet of Things (IoT). Battery materials priorly used to serve as an electrode or electrolyte have demonstrated metal-insulator transitions upon an electrical biasing due to resulting compositional change, which is desirable property for future resistive switching devices. For example, it has been suggested that solid-state electrolyte amorphous lithium lanthanum titanate (a-LLTO) changes in electronic conductivity depending on oxygen content. In this work, switching behavior of a-LLTO was investigated at both bulk- and nano-scale by employing a range of voltage sweep techniques, ultimately establishing a stable and optimal operating condition within the voltage window of − 3.5 V to 3.5 V. This voltage range effectively balances the desirable trait of a substantial resistance change by three orders of magnitude with the imperative avoidance of LLTO decomposition. Experiment and computation with different LLTO composition shows that LLTO has two distinct conductivity states due to Ti reduction. The distribution of these two states is discussed using simplified binary model, implying the conductive filament growth during low resistance state. Consequently, our study deepens understanding of LLTO electronic properties and encourages the interdisciplinary application of battery materials for resistive switching devices.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2949-8228
Relation: http://www.sciencedirect.com/science/article/pii/S2949822823001028; https://doaj.org/toc/2949-8228
DOI: 10.1016/j.nxmate.2023.100102
Access URL: https://doaj.org/article/9d377a1a53a346af8dd833ec0ecc5875
Accession Number: edsdoj.9d377a1a53a346af8dd833ec0ecc5875
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=49778F000CDFEE845053&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://www.doi.org/10.1016/j.nxmate.2023.100102?
    Name: ScienceDirect (all content)-s8985755
    Category: fullText
    Text: View record from ScienceDirect
    MouseOverText: View record from ScienceDirect
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=29498228&ISBN=&volume=2&issue=100102-&date=20240101&spage=&pages=&title=Next Materials&atitle=Elucidating%20dynamic%20conductive%20state%20changes%20in%20amorphous%20lithium%20lanthanum%20titanate%20for%20resistive%20switching%20devices&aulast=Ryosuke%20Shimizu&id=DOI:10.1016/j.nxmate.2023.100102
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/9d377a1a53a346af8dd833ec0ecc5875
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.9d377a1a53a346af8dd833ec0ecc5875
RelevancyScore: 995
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 995.377258300781
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Elucidating dynamic conductive state changes in amorphous lithium lanthanum titanate for resistive switching devices
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ryosuke+Shimizu%22">Ryosuke Shimizu</searchLink><br /><searchLink fieldCode="AR" term="%22Diyi+Cheng%22">Diyi Cheng</searchLink><br /><searchLink fieldCode="AR" term="%22Guomin+Zhu%22">Guomin Zhu</searchLink><br /><searchLink fieldCode="AR" term="%22Bing+Han%22">Bing Han</searchLink><br /><searchLink fieldCode="AR" term="%22Thomas+S%2E+Marchese%22">Thomas S. Marchese</searchLink><br /><searchLink fieldCode="AR" term="%22Randall+Burger%22">Randall Burger</searchLink><br /><searchLink fieldCode="AR" term="%22Mingjie+Xu%22">Mingjie Xu</searchLink><br /><searchLink fieldCode="AR" term="%22Xiaoqing+Pan%22">Xiaoqing Pan</searchLink><br /><searchLink fieldCode="AR" term="%22Minghao+Zhang%22">Minghao Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Ying+Shirley+Meng%22">Ying Shirley Meng</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Next Materials, Vol 2, Iss , Pp 100102- (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Elsevier, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Technology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Solid+electrolyte%22">Solid electrolyte</searchLink><br /><searchLink fieldCode="DE" term="%22Resistive+Switching%22">Resistive Switching</searchLink><br /><searchLink fieldCode="DE" term="%22Li-ion+battery%22">Li-ion battery</searchLink><br /><searchLink fieldCode="DE" term="%22Oxygen+vacancy%22">Oxygen vacancy</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Exploration of novel resistive switching materials attracts attention to achieve neuromorphic computing that can surpass the limit of the current Von-Neumann computing for the time of Internet of Things (IoT). Battery materials priorly used to serve as an electrode or electrolyte have demonstrated metal-insulator transitions upon an electrical biasing due to resulting compositional change, which is desirable property for future resistive switching devices. For example, it has been suggested that solid-state electrolyte amorphous lithium lanthanum titanate (a-LLTO) changes in electronic conductivity depending on oxygen content. In this work, switching behavior of a-LLTO was investigated at both bulk- and nano-scale by employing a range of voltage sweep techniques, ultimately establishing a stable and optimal operating condition within the voltage window of − 3.5 V to 3.5 V. This voltage range effectively balances the desirable trait of a substantial resistance change by three orders of magnitude with the imperative avoidance of LLTO decomposition. Experiment and computation with different LLTO composition shows that LLTO has two distinct conductivity states due to Ti reduction. The distribution of these two states is discussed using simplified binary model, implying the conductive filament growth during low resistance state. Consequently, our study deepens understanding of LLTO electronic properties and encourages the interdisciplinary application of battery materials for resistive switching devices.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2949-8228
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://www.sciencedirect.com/science/article/pii/S2949822823001028; https://doaj.org/toc/2949-8228
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1016/j.nxmate.2023.100102
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/9d377a1a53a346af8dd833ec0ecc5875" linkWindow="_blank">https://doaj.org/article/9d377a1a53a346af8dd833ec0ecc5875</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.9d377a1a53a346af8dd833ec0ecc5875
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.9d377a1a53a346af8dd833ec0ecc5875
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.nxmate.2023.100102
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Solid electrolyte
        Type: general
      – SubjectFull: Resistive Switching
        Type: general
      – SubjectFull: Li-ion battery
        Type: general
      – SubjectFull: Oxygen vacancy
        Type: general
      – SubjectFull: Technology
        Type: general
    Titles:
      – TitleFull: Elucidating dynamic conductive state changes in amorphous lithium lanthanum titanate for resistive switching devices
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ryosuke Shimizu
      – PersonEntity:
          Name:
            NameFull: Diyi Cheng
      – PersonEntity:
          Name:
            NameFull: Guomin Zhu
      – PersonEntity:
          Name:
            NameFull: Bing Han
      – PersonEntity:
          Name:
            NameFull: Thomas S. Marchese
      – PersonEntity:
          Name:
            NameFull: Randall Burger
      – PersonEntity:
          Name:
            NameFull: Mingjie Xu
      – PersonEntity:
          Name:
            NameFull: Xiaoqing Pan
      – PersonEntity:
          Name:
            NameFull: Minghao Zhang
      – PersonEntity:
          Name:
            NameFull: Ying Shirley Meng
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 29498228
          Numbering:
            – Type: volume
              Value: 2
            – Type: issue
              Value: 100102-
          Titles:
            – TitleFull: Next Materials
              Type: main
ResultId 1