Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4

Bibliographic Details
Title: Lipopeptide-mediated Cas9 RNP delivery: A promising broad therapeutic strategy for safely removing deep-intronic variants in ABCA4
Authors: Irene Vázquez-Domínguez, Mert Öktem, Florian A. Winkelaar, Thai Hoang Nguyen, Anita D.M. Hoogendoorn, Eleonora Roschi, Galuh D.N. Astuti, Raoul Timmermans, Nuria Suárez-Herrera, Ilaria Bruno, Albert Ruiz-Llombart, Joseph Brealey, Olivier G. de Jong, Rob W.J. Collin, Enrico Mastrobattista, Alejandro Garanto
Source: Molecular Therapy: Nucleic Acids, Vol 35, Iss 4, Pp 102345- (2024)
Publisher Information: Elsevier, 2024.
Publication Year: 2024
Collection: LCC:Therapeutics. Pharmacology
Subject Terms: MT: RNA/DNA Editing, peptide-mediated delivery, CRISPR-Cas9 genome editing, lipopeptide, intron removal, ABCA4 deep-intronic variants, Therapeutics. Pharmacology, RM1-950
More Details: Deep-intronic (DI) variants represent approximately 10%–12% of disease-causing genetic defects in ABCA4-associated Stargardt disease (STGD1). Although many of these DI variants are amenable to antisense oligonucleotide-based splicing-modulation therapy, no treatment is currently available. These molecules are mostly variant specific, limiting their applicability to a broader patient population. In this study, we investigated the therapeutic potential of the CRISPR-Cas9 system combined with the amphipathic lipopeptide C18:1-LAH5 for intracellular delivery to correct splicing defects caused by different DI variants within the same intron. The combination of these components facilitated efficient editing of two target introns (introns 30 and 36) of ABCA4 in which several recurrent DI variants are found. The partial removal of these introns did not affect ABCA4 splicing or its expression levels when assessed in two different human cellular models: fibroblasts and induced pluripotent stem cell-derived photoreceptor precursor cells (PPCs). Furthermore, the DNA editing in STGD1 patient-derived PPCs led to a ∼50% reduction of the pseudoexon-containing transcripts resulting from the c.4539+2001G>A variant in intron 30. Overall, we provide proof-of-concept evidence of the use of C18:1-LAH5 as a delivery system for therapeutic genome editing for ABCA4-associated DI variants, offering new opportunities for clinical translation.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2162-2531
Relation: http://www.sciencedirect.com/science/article/pii/S2162253124002324; https://doaj.org/toc/2162-2531
DOI: 10.1016/j.omtn.2024.102345
Access URL: https://doaj.org/article/9cd8756ec318431f8076236a1e749258
Accession Number: edsdoj.9cd8756ec318431f8076236a1e749258
Database: Directory of Open Access Journals
More Details
ISSN:21622531
DOI:10.1016/j.omtn.2024.102345
Published in:Molecular Therapy: Nucleic Acids
Language:English