TRPV1 Supports Axogenic Enhanced Excitability in Response to Neurodegenerative Stress

Bibliographic Details
Title: TRPV1 Supports Axogenic Enhanced Excitability in Response to Neurodegenerative Stress
Authors: Michael L. Risner, Nolan R. McGrady, Andrew M. Boal, Silvia Pasini, David J. Calkins
Source: Frontiers in Cellular Neuroscience, Vol 14 (2021)
Publisher Information: Frontiers Media S.A., 2021.
Publication Year: 2021
Collection: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
Subject Terms: TRPV1, neurodegeneration, glaucoma, retinal ganglion cells, axon, dendritic pruning, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
More Details: Early progression in neurodegenerative disease involves challenges to homeostatic processes, including those controlling axonal excitability and dendritic organization. In glaucoma, the leading cause of irreversible blindness, stress from intraocular pressure (IOP) causes degeneration of retinal ganglion cells (RGC) and their axons which comprise the optic nerve. Previously, we discovered that early progression induces axogenic, voltage-gated enhanced excitability of RGCs, even as dendritic complexity in the retina reduces. Here, we investigate a possible contribution of the transient receptor potential vanilloid type 1 (TRPV1) channel to enhanced excitability, given its role in modulating excitation in other neural systems. We find that genetic deletion of Trpv1 (Trpv1−/−) influences excitability differently for RGCs firing continuously to light onset (αON-Sustained) vs. light offset (αOFF-Sustained). Deletion drives excitability in opposing directions so that Trpv1−/− RGC responses with elevated IOP equalize to that of wild-type (WT) RGCs without elevated IOP. Depolarizing current injections in the absence of light-driven presynaptic excitation to directly modulate voltage-gated channels mirrored these changes, while inhibiting voltage-gated sodium channels and isolating retinal excitatory postsynaptic currents abolished both the differences in light-driven activity between WT and Trpv1−/− RGCs and changes in response due to IOP elevation. Together, these results support a voltage-dependent, axogenic influence of Trpv1−/− with elevated IOP. Finally, Trpv1−/− slowed the loss of dendritic complexity with elevated IOP, opposite its effect on axon degeneration, supporting the idea that axonal and dendritic degeneration follows distinctive programs even at the level of membrane excitability.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1662-5102
Relation: https://www.frontiersin.org/articles/10.3389/fncel.2020.603419/full; https://doaj.org/toc/1662-5102
DOI: 10.3389/fncel.2020.603419
Access URL: https://doaj.org/article/98328bee1f684629a8b9579b5a1eb8ab
Accession Number: edsdoj.98328bee1f684629a8b9579b5a1eb8ab
Database: Directory of Open Access Journals
More Details
ISSN:16625102
DOI:10.3389/fncel.2020.603419
Published in:Frontiers in Cellular Neuroscience
Language:English