Synthesis, Characterization, and Magnetoresistive Properties of the Epitaxial Pd0.96Fe0.04/VN/Pd0.92Fe0.08 Superconducting Spin-Valve Heterostructure

Bibliographic Details
Title: Synthesis, Characterization, and Magnetoresistive Properties of the Epitaxial Pd0.96Fe0.04/VN/Pd0.92Fe0.08 Superconducting Spin-Valve Heterostructure
Authors: Igor Yanilkin, Wael Mohammed, Amir Gumarov, Airat Kiiamov, Roman Yusupov, Lenar Tagirov
Source: Nanomaterials, Vol 11, Iss 1, p 64 (2020)
Publisher Information: MDPI AG, 2020.
Publication Year: 2020
Collection: LCC:Chemistry
Subject Terms: spintronics, superconducting spin-valve, epitaxial thin-film heterostructure, palladium-iron alloy, vanadium nitride, Chemistry, QD1-999
More Details: A thin-film superconductor(S)/ferromagnet(F) F1/S/F2-type Pd0.96Fe0.04(20 nm)/VN(30 nm)/Pd0.92Fe0.08(12 nm) heteroepitaxial structure was synthesized on (001)-oriented single-crystal MgO substrate utilizing a combination of the reactive magnetron sputtering and the molecular-beam epitaxy techniques in ultrahigh vacuum conditions. The reference VN film, Pd0.96Fe0.04/VN, and VN/Pd0.92Fe0.08 bilayers were grown in one run with the target sample. In-situ low-energy electron diffraction and ex-situ X-ray diffraction investigations approved that all the Pd1−xFex and VN layers in the series grew epitaxial in a cube-on-cube mode. Electric resistance measurements demonstrated sharp transitions to the superconducting state with the critical temperature reducing gradually from 7.7 to 5.4 K in the sequence of the VN film, Pd0.96Fe0.04/VN, VN/Pd0.92Fe0.08, and Pd0.96Fe0.04/VN/Pd0.92Fe0.08 heterostructures due to the superconductor/ferromagnet proximity effect. Transition width increased in the same sequence from 21 to 40 mK. Magnetoresistance studies of the trilayer Pd0.96Fe0.04/VN/Pd0.92Fe0.08 sample revealed a superconducting spin-valve effect upon switching between the parallel and antiparallel magnetic configurations, and anomalies associated with the magnetic moment reversals of the ferromagnetic Pd0.92Fe0.08 and Pd0.96Fe0.04 alloy layers. The moderate critical temperature suppression and manifestations of superconducting spin-valve properties make this kind of material promising for superconducting spintronics applications.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2079-4991
Relation: https://www.mdpi.com/2079-4991/11/1/64; https://doaj.org/toc/2079-4991
DOI: 10.3390/nano11010064
Access URL: https://doaj.org/article/ce952be784a040b9924996773d2c6519
Accession Number: edsdoj.952be784a040b9924996773d2c6519
Database: Directory of Open Access Journals
More Details
ISSN:20794991
DOI:10.3390/nano11010064
Published in:Nanomaterials
Language:English