Bibliographic Details
Title: |
High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer |
Authors: |
Chieh-Ming Hung, Sheng-Fu Wang, Wei-Chih Chao, Jian-Liang Li, Bo-Han Chen, Chih-Hsuan Lu, Kai-Yen Tu, Shang-Da Yang, Wen-Yi Hung, Yun Chi, Pi-Tai Chou |
Source: |
Nature Communications, Vol 15, Iss 1, Pp 1-10 (2024) |
Publisher Information: |
Nature Portfolio, 2024. |
Publication Year: |
2024 |
Collection: |
LCC:Science |
Subject Terms: |
Science |
More Details: |
Abstract Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr−1 m−2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region. |
Document Type: |
article |
File Description: |
electronic resource |
Language: |
English |
ISSN: |
2041-1723 |
Relation: |
https://doaj.org/toc/2041-1723 |
DOI: |
10.1038/s41467-024-49127-x |
Access URL: |
https://doaj.org/article/934f5415d07c434ea7401538dd5d1564 |
Accession Number: |
edsdoj.934f5415d07c434ea7401538dd5d1564 |
Database: |
Directory of Open Access Journals |