Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium

Bibliographic Details
Title: Co-overexpression of chitinase and β-1,3-glucanase significantly enhanced the resistance of Iranian wheat cultivars to Fusarium
Authors: Negin Mohammadizadeh-Heydari, Masoud Tohidfar, Bahram Maleki Zanjani, Motahhareh Mohsenpour, Rahele Ghanbari Moheb Seraj, Keyvan Esmaeilzadeh-Salestani
Source: BMC Biotechnology, Vol 24, Iss 1, Pp 1-12 (2024)
Publisher Information: BMC, 2024.
Publication Year: 2024
Collection: LCC:Biotechnology
Subject Terms: Chitinase, β-1,3-glucanases, Biolistic method, Transgenic wheat, Biotechnology, TP248.13-248.65
More Details: Abstract Fusarium head blight (FHB) is a devastating fungal disease affecting different cereals, particularly wheat, and poses a serious threat to global wheat production. Chitinases and β-glucanases are two important proteins involved in lysing fungal cell walls by targeting essential macromolecular components, including chitin and β-glucan micro fibrils. In our experiment, a transgenic wheat (Triticum aestivum) was generated by introducing chitinase and glucanase genes using Biolistic technique and Recombinant pBI121 plasmid (pBI-ChiGlu (-)). This plasmid contained chitinase and glucanase genes as well as nptII gene as a selectable marker. The expression of chitinase and glucanase was individually controlled by CaMV35S promoter and Nos terminator. Immature embryo explants from five Iranian cultivars (Arta, Moghan, Sisun, Gascogen and A-Line) were excised from seeds and cultured on callus induction medium to generate embryonic calluses. Embryogenic calluses with light cream color and brittle texture were selected and bombarded using gold nanoparticles coated with the recombinant pBI-ChiGlu plasmid. Bombarded calluses initially were transferred to selective callus induction medium, and later, they were transfferd to selective regeneration medium. The selective agent was kanamycin at a concentration of 25 mg/l in both media. Among five studied cultivars, A-Line showed the highest transformation percentage (4.8%), followed by the Sisun, Gascogen and Arta in descending order. PCR and Southern blot analysis confirmed the integration of genes into the genome of wheat cultivars. Furthermore, in an in-vitro assay, the growth of Fusarium graminearum was significantly inhibited by using 200 μg of leaf protein extract from transgenic plants. According to our results, the transgenic plants (T1) showed the resistance against Fusarium when were compared to the non-transgenic plants. All transgenic plants showed normal fertility and no abnormal response was observed in their growth and development.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1472-6750
Relation: https://doaj.org/toc/1472-6750
DOI: 10.1186/s12896-024-00859-0
Access URL: https://doaj.org/article/926507ec59004931a0921f4ac4be70a1
Accession Number: edsdoj.926507ec59004931a0921f4ac4be70a1
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:14726750
DOI:10.1186/s12896-024-00859-0
Published in:BMC Biotechnology
Language:English