REGRESSÕES ROBUSTA E LINEAR PARA ESTIMATIVA DE BIOMASSA VIA IMAGEM SENTINEL EM UMA FLORESTA TROPICAL

Bibliographic Details
Title: REGRESSÕES ROBUSTA E LINEAR PARA ESTIMATIVA DE BIOMASSA VIA IMAGEM SENTINEL EM UMA FLORESTA TROPICAL
Authors: Aline Bernarda Debastiani, Marks Melo Moura, Franciel Eduardo Rex, Carlos Roberto Sanquetta, Ana Paula Dalla Corte, Naiara Pinto
Source: BIOFIX Scientific Journal, Vol 4, Iss 2, Pp 81-87 (2019)
Publisher Information: Universidade Federal do Paraná, 2019.
Publication Year: 2019
Collection: LCC:Agriculture (General)
LCC:Environmental pollution
LCC:Environmental protection
Subject Terms: Amazônia, multiespectral, quantificação, SAR, Agriculture (General), S1-972, Environmental pollution, TD172-193.5, Environmental protection, TD169-171.8
More Details: A preocupação com as mudanças climáticas globais tem motivado diversos pesquisadores a encontrar métodos eficazes para a quantificação de biomassa florestal e carbono estocado em florestas tropicais, uma vez que, estas atuam de forma mitigatória e compensatória desses efeitos. O sensoriamento remoto tem sido utilizado de forma eficaz e com grande potencial para a estimativas em larga escala, com destaque para dados de Radar de Abertura Sintética (SAR) e imagens multiespectrais. Os estudos já desenvolvidos com essa finalidade utilizaram diversas técnicas para associar a biomassa acima do solo (AGB) com os dados obtidos por sensoriamento remoto, entretanto, a aplicação da regressão robusta ainda não está sendo utilizada para tal finalidade. Sendo assim, o objetivo do presente estudo é avaliar o desempenho da regressão robusta comparando com a regressão linear que é tradicionalmente utilizada, além de avaliar o potencial da utilização dos dados oriundos do satélite Sentinel 1 e 2. Neste âmbito, foram utilizadas imagens multiespectrais (Sentinel 2), imagem SAR (Sentinel 1) e como variável resposta a AGB obtida a partir de dados Light Detection and Ranging (LiDAR). A AGB foi estimada por dois métodos de regressão: robusta e linear. Os modelos de regressão robusta e linear apresentaram desempenho semelhante, com R²aj. variando entre 0,33 a 0,34, erro padrão da estimativa de 48 Mg.ha-1 e raiz do erro médio quadrático de 16%. Conclui-se que não houve diferença significativa entre a regressão linear e a regressão robusta para esse conjunto de dados, indicando que a regressão não é influenciada por possíveis outliers e que existe potencial na utilização de dados oriundos do satélite Sentinel.
Document Type: article
File Description: electronic resource
Language: Portuguese
ISSN: 2525-9725
Relation: https://revistas.ufpr.br/biofix/article/view/62922; https://doaj.org/toc/2525-9725
DOI: 10.5380/biofix.v4i2.62922
Access URL: https://doaj.org/article/e9186dece94645e29ba176cf6c6ccc51
Accession Number: edsdoj.9186dece94645e29ba176cf6c6ccc51
Database: Directory of Open Access Journals
More Details
ISSN:25259725
DOI:10.5380/biofix.v4i2.62922
Published in:BIOFIX Scientific Journal
Language:Portuguese