Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure

Bibliographic Details
Title: Modules for Experiments in Stellar Astrophysics (MESA): Time-dependent Convection, Energy Conservation, Automatic Differentiation, and Infrastructure
Authors: Adam S. Jermyn, Evan B. Bauer, Josiah Schwab, R. Farmer, Warrick H. Ball, Earl P. Bellinger, Aaron Dotter, Meridith Joyce, Pablo Marchant, Joey S. G. Mombarg, William M. Wolf, Tin Long Sunny Wong, Giulia C. Cinquegrana, Eoin Farrell, R. Smolec, Anne Thoul, Matteo Cantiello, Falk Herwig, Odette Toloza, Lars Bildsten, Richard H. D. Townsend, F. X. Timmes
Source: The Astrophysical Journal Supplement Series, Vol 265, Iss 1, p 15 (2023)
Publisher Information: IOP Publishing, 2023.
Publication Year: 2023
Collection: LCC:Astrophysics
Subject Terms: Stellar physics, Stellar evolution, Stellar evolutionary models, Computational methods, Astrophysics, QB460-466
More Details: We update the capabilities of the open-knowledge software instrument Modules for Experiments in Stellar Astrophysics ( MESA ). The new auto _ diff module implements automatic differentiation in MESA , an enabling capability that alleviates the need for hard-coded analytic expressions or finite-difference approximations. We significantly enhance the treatment of the growth and decay of convection in MESA with a new model for time-dependent convection, which is particularly important during late-stage nuclear burning in massive stars and electron-degenerate ignition events. We strengthen MESA ’s implementation of the equation of state, and we quantify continued improvements to energy accounting and solver accuracy through a discussion of different energy equation features and enhancements. To improve the modeling of stars in MESA , we describe key updates to the treatment of stellar atmospheres, molecular opacities, Compton opacities, conductive opacities, element diffusion coefficients, and nuclear reaction rates. We introduce treatments of starspots, an important consideration for low-mass stars, and modifications for superadiabatic convection in radiation-dominated regions. We describe new approaches for increasing the efficiency of calculating monochromatic opacities and radiative levitation, and for increasing the efficiency of evolving the late stages of massive stars with a new operator-split nuclear burning mode. We close by discussing major updates to MESA ’s software infrastructure that enhance source code development and community engagement.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1538-4365
0067-0049
Relation: https://doaj.org/toc/0067-0049
DOI: 10.3847/1538-4365/acae8d
Access URL: https://doaj.org/article/8b2d350d4c7143ca9b52af8a82fb2d0e
Accession Number: edsdoj.8b2d350d4c7143ca9b52af8a82fb2d0e
Database: Directory of Open Access Journals
More Details
ISSN:15384365
00670049
DOI:10.3847/1538-4365/acae8d
Published in:The Astrophysical Journal Supplement Series
Language:English