Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T

Bibliographic Details
Title: Simultaneous Measurement of the BOLD Effect and Metabolic Changes in Response to Visual Stimulation Using the MEGA-PRESS Sequence at 3 T
Authors: Gerard Eric Dwyer, Alexander R. Craven, Justyna Bereśniewicz, Katarzyna Kazimierczak, Lars Ersland, Kenneth Hugdahl, Renate Grüner
Source: Frontiers in Human Neuroscience, Vol 15 (2021)
Publisher Information: Frontiers Media S.A., 2021.
Publication Year: 2021
Collection: LCC:Neurosciences. Biological psychiatry. Neuropsychiatry
Subject Terms: functional, spectroscopy, MRS, GABA, glutamate, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
More Details: The blood oxygen level dependent (BOLD) effect that provides the contrast in functional magnetic resonance imaging (fMRI) has been demonstrated to affect the linewidth of spectral peaks as measured with magnetic resonance spectroscopy (MRS) and through this, may be used as an indirect measure of cerebral blood flow related to neural activity. By acquiring MR-spectra interleaved with frames without water suppression, it may be possible to image the BOLD effect and associated metabolic changes simultaneously through changes in the linewidth of the unsuppressed water peak. The purpose of this study was to implement this approach with the MEGA-PRESS sequence, widely considered to be the standard sequence for quantitative measurement of GABA at field strengths of 3 T and lower, to observe how changes in both glutamate (measured as Glx) and GABA levels may relate to changes due to the BOLD effect. MR-spectra and fMRI were acquired from the occipital cortex (OCC) of 20 healthy participants whilst undergoing intrascanner visual stimulation in the form of a red and black radial checkerboard, alternating at 8 Hz, in 90 s blocks comprising 30 s of visual stimulation followed by 60 s of rest. Results show very strong agreement between the changes in the linewidth of the unsuppressed water signal and the canonical haemodynamic response function as well as a strong, negative, but not statistically significant, correlation with the Glx signal as measured from the OFF spectra in MEGA-PRESS pairs. Findings from this experiment suggest that the unsuppressed water signal provides a reliable measure of the BOLD effect and that correlations with associated changes in GABA and Glx levels may also be measured. However, discrepancies between metabolite levels as measured from the difference and OFF spectra raise questions regarding the reliability of the respective methods.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1662-5161
Relation: https://www.frontiersin.org/articles/10.3389/fnhum.2021.644079/full; https://doaj.org/toc/1662-5161
DOI: 10.3389/fnhum.2021.644079
Access URL: https://doaj.org/article/d881ead08e644b9e8ed081a51e7e4e5d
Accession Number: edsdoj.881ead08e644b9e8ed081a51e7e4e5d
Database: Directory of Open Access Journals
More Details
ISSN:16625161
DOI:10.3389/fnhum.2021.644079
Published in:Frontiers in Human Neuroscience
Language:English