A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes

Bibliographic Details
Title: A Multi-layered Quantitative In Vivo Expression Atlas of the Podocyte Unravels Kidney Disease Candidate Genes
Authors: Markus M. Rinschen, Markus Gödel, Florian Grahammer, Stefan Zschiedrich, Martin Helmstädter, Oliver Kretz, Mostafa Zarei, Daniela A. Braun, Sebastian Dittrich, Caroline Pahmeyer, Patricia Schroder, Carolin Teetzen, HeonYung Gee, Ghaleb Daouk, Martin Pohl, Elisa Kuhn, Bernhard Schermer, Victoria Küttner, Melanie Boerries, Hauke Busch, Mario Schiffer, Carsten Bergmann, Marcus Krüger, Friedhelm Hildebrandt, Joern Dengjel, Thomas Benzing, Tobias B. Huber
Source: Cell Reports, Vol 23, Iss 8, Pp 2495-2508 (2018)
Publisher Information: Elsevier, 2018.
Publication Year: 2018
Collection: LCC:Biology (General)
Subject Terms: Biology (General), QH301-705.5
More Details: Summary: Damage to and loss of glomerular podocytes has been identified as the culprit lesion in progressive kidney diseases. Here, we combine mass spectrometry-based proteomics with mRNA sequencing, bioinformatics, and hypothesis-driven studies to provide a comprehensive and quantitative map of mammalian podocytes that identifies unanticipated signaling pathways. Comparison of the in vivo datasets with proteomics data from podocyte cell cultures showed a limited value of available cell culture models. Moreover, in vivo stable isotope labeling by amino acids uncovered surprisingly rapid synthesis of mitochondrial proteins under steady-state conditions that was perturbed under autophagy-deficient, disease-susceptible conditions. Integration of acquired omics dimensions suggested FARP1 as a candidate essential for podocyte function, which could be substantiated by genetic analysis in humans and knockdown experiments in zebrafish. This work exemplifies how the integration of multi-omics datasets can identify a framework of cell-type-specific features relevant for organ health and disease. : The podocyte forms the most outer and essential part of the renal filter and restricts the passage of proteins from blood to urine. Rinschen et al. combine deep proteomic and transcriptomic data with protein dynamics from native mouse podocytes to reveal insights into podocyte biology and to identify candidate disease genes. Keywords: end-stage renal disease, systems biology, proteinuria, focal segmental glomerulosclerosis, pulse SILAC, metabolism, slit diaphragm, hereditary nephrotic syndrome, kinase, proteostasis
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2211-1247
Relation: http://www.sciencedirect.com/science/article/pii/S2211124718306181; https://doaj.org/toc/2211-1247
DOI: 10.1016/j.celrep.2018.04.059
Access URL: https://doaj.org/article/829b5109182743b5adae0c030affe4e5
Accession Number: edsdoj.829b5109182743b5adae0c030affe4e5
Database: Directory of Open Access Journals
More Details
ISSN:22111247
DOI:10.1016/j.celrep.2018.04.059
Published in:Cell Reports
Language:English