Parameter estimation in quantum sensing based on deep reinforcement learning

Bibliographic Details
Title: Parameter estimation in quantum sensing based on deep reinforcement learning
Authors: Tailong Xiao, Jianping Fan, Guihua Zeng
Source: npj Quantum Information, Vol 8, Iss 1, Pp 1-12 (2022)
Publisher Information: Nature Portfolio, 2022.
Publication Year: 2022
Collection: LCC:Physics
LCC:Electronic computers. Computer science
Subject Terms: Physics, QC1-999, Electronic computers. Computer science, QA75.5-76.95
More Details: Abstract Parameter estimation is a pivotal task, where quantum technologies can enhance precision greatly. We investigate the time-dependent parameter estimation based on deep reinforcement learning, where the noise-free and noisy bounds of parameter estimation are derived from a geometrical perspective. We propose a physical-inspired linear time-correlated control ansatz and a general well-defined reward function integrated with the derived bounds to accelerate the network training for fast generating quantum control signals. In the light of the proposed scheme, we validate the performance of time-dependent and time-independent parameter estimation under noise-free and noisy dynamics. In particular, we evaluate the transferability of the scheme when the parameter has a shift from the true parameter. The simulation showcases the robustness and sample efficiency of the scheme and achieves the state-of-the-art performance. Our work highlights the universality and global optimality of deep reinforcement learning over conventional methods in practical parameter estimation of quantum sensing.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2056-6387
Relation: https://doaj.org/toc/2056-6387
DOI: 10.1038/s41534-021-00513-z
Access URL: https://doaj.org/article/7f488e89b9f740ccb50f93be6e10bbcf
Accession Number: edsdoj.7f488e89b9f740ccb50f93be6e10bbcf
Database: Directory of Open Access Journals
More Details
ISSN:20566387
DOI:10.1038/s41534-021-00513-z
Published in:npj Quantum Information
Language:English