Bibliographic Details
Title: |
Single‐Cell Membrane Potential Stimulation and Recording by an Electrolyte‐Gated Organic Field‐Effect Transistor |
Authors: |
Nicolò Lago, Alessandra Galli, Sarah Tonello, Sara Ruiz‐Molina, Saralea Marino, Stefano Casalini, Marco Buonomo, Simona Pisu, Marta Mas‐Torrent, Giada Giorgi, Morten Gram Pedersen, Mario Bortolozzi, Andrea Cester |
Source: |
Advanced Electronic Materials, Vol 11, Iss 2, Pp n/a-n/a (2025) |
Publisher Information: |
Wiley-VCH, 2025. |
Publication Year: |
2025 |
Collection: |
LCC:Electric apparatus and materials. Electric circuits. Electric networks LCC:Physics |
Subject Terms: |
cell activity recording, cell stimulation, EGOFET, organic Elctronics, Electric apparatus and materials. Electric circuits. Electric networks, TK452-454.4, Physics, QC1-999 |
More Details: |
Abstract The reliable stimulation and recording of electrical activity in single cells by means of organic bio‐electronics will be an important milestone in developing new low‐cost and highly biocompatible medical devices. This paper demonstrates extracellular voltage stimulation and single‐cell membrane potential recording by means of a dual‐gate electrolyte‐gated organic field‐effect transistors (EGOFET) employing 2,8‐Difluoro‐5,11‐bis(triethylsilylethynyl)anthradithiophene blended with polystyrene as active material. To obtain a sufficiently small footprint to allow bidirectional communication at the single cell level, the EGOFET technology has been scaled down implementing a Corbino layout, paving the way to the development of novel bidirectional Electrocorticography (ECoG) devices with a high spatial resolution. A specific and thorough analysis of the working mechanisms of EGOFET‐based bio‐sensors is reported, highlighting the importance of the device design and using an appropriate batch of measurements for the recording of the electrical activity of cells. |
Document Type: |
article |
File Description: |
electronic resource |
Language: |
English |
ISSN: |
2199-160X |
Relation: |
https://doaj.org/toc/2199-160X |
DOI: |
10.1002/aelm.202400134 |
Access URL: |
https://doaj.org/article/7ed6e5111d16483886bdf099f31a2898 |
Accession Number: |
edsdoj.7ed6e5111d16483886bdf099f31a2898 |
Database: |
Directory of Open Access Journals |