Heme oxygenase-1 is an equid alphaherpesvirus 8 replication restriction host protein and suppresses viral replication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathway

Bibliographic Details
Title: Heme oxygenase-1 is an equid alphaherpesvirus 8 replication restriction host protein and suppresses viral replication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathway
Authors: Tongtong Wang, Shuwen Li, Xinyao Hu, Yiqing Geng, Li Chen, Wenqiang Liu, Juan Zhao, Wenxia Tian, Changfa Wang, Yubao Li, Liangliang Li
Source: Microbiology Spectrum, Vol 12, Iss 4 (2024)
Publisher Information: American Society for Microbiology, 2024.
Publication Year: 2024
Collection: LCC:Microbiology
Subject Terms: EqHV-8, HO-1, biliverdin, anti-viral effect, mouse model, Microbiology, QR1-502
More Details: ABSTRACTEquid alphaherpesvirus 8 (EqHV-8) is one of the most economically important viruses that is known to cause severe respiratory disease, abortion, and neurological syndromes in equines. However, no effective vaccines or therapeutic agents are available to control EqHV-8 infection. Heme oxygenase-1 (HO-1) is an antioxidant defense enzyme that displays significant cytoprotective effects against different viral infections. However, the literature on the function of HO-1 during EqHV-8 infection is little. We explored the effects of HO-1 on EqHV-8 infection and revealed its potential mechanisms. Our results demonstrated that HO-1 induced by cobalt-protoporphyrin (CoPP) or HO-1 overexpression inhibited EqHV-8 replication in susceptible cells. In contrast, HO-1 inhibitor (zinc protoporphyria) or siRNA targeting HO-1 reversed the anti-EqHV-8 activity. Furthermore, biliverdin, a metabolic product of HO-1, mediated the anti-EqHV-8 effect of HO-1 via both the protein kinase C (PKC)β/extracellular signal-regulated kinase (ERK)1/ERK2 and nitric oxide (NO)-dependent cyclic guanosine monophosphate (cGMP)–protein kinase G (PKG) signaling pathways. In addition, CoPP protected the mice by reducing the EqHV-8 infection in the lungs. Altogether, these results indicated that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.IMPORTANCEEqHV-8 infections have threatened continuously donkey and horse industry worldwide, which induces huge economic losses every year. However, no effective vaccination strategies or drug against EqHV-8 infection until now. Our present study found that one host protien HO-1 restrict EqHV-8 replication in vitro and in vivo. Furthermore, we demonstrate that HO-1 and its metabolite biliverdin suppress EqHV-8 relication via the PKCβ/ERK1/ERK2 and NO/cGMP/PKG pathways. Hence, we believe that HO-1 can be developed as a promising therapeutic strategy to control EqHV-8 infection.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2165-0497
Relation: https://doaj.org/toc/2165-0497
DOI: 10.1128/spectrum.03220-23
Access URL: https://doaj.org/article/e7db056859f3448b9b5516db7c74b4dd
Accession Number: edsdoj.7db056859f3448b9b5516db7c74b4dd
Database: Directory of Open Access Journals
More Details
ISSN:21650497
DOI:10.1128/spectrum.03220-23
Published in:Microbiology Spectrum
Language:English