Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs

Bibliographic Details
Title: Mapping genomic regulation of kidney disease and traits through high-resolution and interpretable eQTLs
Authors: Seong Kyu Han, Michelle T. McNulty, Christopher J. Benway, Pei Wen, Anya Greenberg, Ana C. Onuchic-Whitford, Nephrotic Syndrome Study Network (NEPTUNE), Dongkeun Jang, Jason Flannick, Noël P. Burtt, Parker C. Wilson, Benjamin D. Humphreys, Xiaoquan Wen, Zhe Han, Dongwon Lee, Matthew G. Sampson
Source: Nature Communications, Vol 14, Iss 1, Pp 1-16 (2023)
Publisher Information: Nature Portfolio, 2023.
Publication Year: 2023
Collection: LCC:Science
Subject Terms: Science
More Details: Abstract Expression quantitative trait locus (eQTL) studies illuminate genomic variants that regulate specific genes and contribute to fine-mapped loci discovered via genome-wide association studies (GWAS). Efforts to maximize their accuracy are ongoing. Using 240 glomerular (GLOM) and 311 tubulointerstitial (TUBE) micro-dissected samples from human kidney biopsies, we discovered 5371 GLOM and 9787 TUBE genes with at least one variant significantly associated with expression (eGene) by incorporating kidney single-nucleus open chromatin data and transcription start site distance as an “integrative prior” for Bayesian statistical fine-mapping. The use of an integrative prior resulted in higher resolution eQTLs illustrated by (1) smaller numbers of variants in credible sets with greater confidence, (2) increased enrichment of partitioned heritability for GWAS of two kidney traits, (3) an increased number of variants colocalized with the GWAS loci, and (4) enrichment of computationally predicted functional regulatory variants. A subset of variants and genes were validated experimentally in vitro and using a Drosophila nephrocyte model. More broadly, this study demonstrates that tissue-specific eQTL maps informed by single-nucleus open chromatin data have enhanced utility for diverse downstream analyses.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-023-37691-7
Access URL: https://doaj.org/article/7d29a604d3e4432e9d83b826b3e053bc
Accession Number: edsdoj.7d29a604d3e4432e9d83b826b3e053bc
Database: Directory of Open Access Journals
More Details
ISSN:20411723
DOI:10.1038/s41467-023-37691-7
Published in:Nature Communications
Language:English