Identification of QTL for kernel weight and size and analysis of the pentatricopeptide repeat (PPR) gene family in cultivated peanut (Arachis hypogaea L.)

Bibliographic Details
Title: Identification of QTL for kernel weight and size and analysis of the pentatricopeptide repeat (PPR) gene family in cultivated peanut (Arachis hypogaea L.)
Authors: Yuanjin Fang, Hua Liu, Li Qin, Feiyan Qi, Ziqi Sun, Jihua Wu, Wenzhao Dong, Bingyan Huang, Xinyou Zhang
Source: BMC Genomics, Vol 24, Iss 1, Pp 1-10 (2023)
Publisher Information: BMC, 2023.
Publication Year: 2023
Collection: LCC:Biotechnology
LCC:Genetics
Subject Terms: Peanut (Arachis hypogaea L.), Kernel weight, Kernel size, QTLs (quantitative trait loci), Pentatricopeptide repeat (PPR), Biotechnology, TP248.13-248.65, Genetics, QH426-470
More Details: Abstract Peanut (Arachis hypogaea L.) is an important oilseed crop worldwide. Improving its yield is crucial for sustainable peanut production to meet increasing food and industrial requirements. Deciphering the genetic control underlying peanut kernel weight and size, which are essential components of peanut yield, would facilitate high-yield breeding. A high-density single nucleotide polymorphism (SNP)-based linkage map was constructed using a recombinant inbred lines (RIL) population derived from a cross between the variety Yuanza9102 and a germplasm accession wt09-0023. Kernel weight and size quantitative trait loci (QTLs) were co-localized to a 0.16 Mb interval on Arahy07 using inclusive composite interval mapping (ICIM). Analysis of SNP, and Insertion or Deletion (INDEL) markers in the QTL interval revealed a gene encoding a pentatricopeptide repeat (PPR) superfamily protein as a candidate closely linked with kernel weight and size in cultivated peanut. Examination of the PPR gene family indicated a high degree of collinearity of PPR genes between A. hypogaea and its diploid progenitors, Arachis duranensis and Arachis ipaensis. The candidate PPR gene, Arahy.JX1V6X, displayed a constitutive expression pattern in developing seeds. These findings lay a foundation for further fine mapping of QTLs related to kernel weight and size, as well as validation of candidate genes in cultivated peanut.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1471-2164
Relation: https://doaj.org/toc/1471-2164
DOI: 10.1186/s12864-023-09568-y
Access URL: https://doaj.org/article/6f56d16d42204dd0830e949f7cc9247e
Accession Number: edsdoj.6f56d16d42204dd0830e949f7cc9247e
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:14712164
DOI:10.1186/s12864-023-09568-y
Published in:BMC Genomics
Language:English