Subinhibitory Concentrations of Antibiotics Alter the Response of Klebsiella pneumoniae to Components of Innate Host Defense

Bibliographic Details
Title: Subinhibitory Concentrations of Antibiotics Alter the Response of Klebsiella pneumoniae to Components of Innate Host Defense
Authors: Clement Opoku-Temeng, Brett Freedman, Adeline R. Porter, Scott D. Kobayashi, Liang Chen, Barry N. Kreiswirth, Frank R. DeLeo
Source: Microbiology Spectrum, Vol 10, Iss 6 (2022)
Publisher Information: American Society for Microbiology, 2022.
Publication Year: 2022
Collection: LCC:Microbiology
Subject Terms: Klebsiella, antibiotic resistance, capsular polysaccharide, serum resistance, Microbiology, QR1-502
More Details: ABSTRACT Carbapenem-resistant Klebsiella pneumoniae isolates classified as multilocus sequence type 258 (ST258) are a problem in health care settings in many countries globally. ST258 isolates are resistant to multiple classes of antibiotics and can cause life-threatening infections, such as pneumonia and sepsis, in susceptible individuals. Treatment strategies for such infections are limited. Understanding the response of K. pneumoniae to host factors in the presence of antibiotics could reveal mechanisms employed by the pathogen to evade killing in the susceptible host, as well as inform treatment of infections. Here, we investigated the ability of antibiotics at subinhibitory concentrations to alter K. pneumoniae capsular polysaccharide (CPS) production and survival in normal human serum (NHS). Unexpectedly, pretreatment with some of the antibiotics tested enhanced ST258 survival in NHS. For example, a subinhibitory concentration of mupirocin increased survival for 7 of 10 clinical isolates evaluated and there was increased cell-associated CPS for 3 of these isolates compared with untreated controls. Additionally, mupirocin pretreatment caused concomitant reduction in the deposition of the serum complement protein C5b-9 on the surface of these three isolates. Transcriptome analyses with a selected ST258 isolate (34446) indicated that genes implicated in the stringent response and/or serum resistance were upregulated following mupirocin treatment and/or culture in NHS. In conclusion, mupirocin and/or human serum causes changes in the K. pneumoniae transcriptome that likely contribute to the observed decrease in serum susceptibility via a multifactorial process. Whether these responses can be extended more broadly and thus impact clinical outcome in the human host merits further investigation. IMPORTANCE The extent to which commensal bacteria are altered by exposure to subinhibitory concentrations of antibiotics (outside resistance) remains incompletely determined. To gain a better understanding of this phenomenon, we tested the ability of selected antibiotics (at subinhibitory concentrations) to alter survival of ST258 clinical isolates in normal human serum. We found that exposure of ST258 to antibiotics at low concentrations differentially altered gene expression, capsule production, serum complement deposition, and bacterial survival. The findings were isolate and antibiotic dependent but provide insight into a potential confounding issue associated with ST258 infections.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2165-0497
Relation: https://doaj.org/toc/2165-0497
DOI: 10.1128/spectrum.01517-22
Access URL: https://doaj.org/article/e6821ac3fdb142899e410a6c0850d165
Accession Number: edsdoj.6821ac3fdb142899e410a6c0850d165
Database: Directory of Open Access Journals
More Details
ISSN:21650497
DOI:10.1128/spectrum.01517-22
Published in:Microbiology Spectrum
Language:English