Environmental changes affect the microbial release of hydrogen sulfide and methane from sediments at Boknis Eck (SW Baltic Sea)

Bibliographic Details
Title: Environmental changes affect the microbial release of hydrogen sulfide and methane from sediments at Boknis Eck (SW Baltic Sea)
Authors: Mirjam Perner, Klaus Wallmann, Nicole Adam-Beyer, Helmke Hepach, Katja Laufer-Meiser, Stefanie Böhnke, Isabel Diercks, Hermann W. Bange, Daniela Indenbirken, Verena Nikeleit, Casey Bryce, Andreas Kappler, Anja Engel, Florian Scholz
Source: Frontiers in Microbiology, Vol 13 (2022)
Publisher Information: Frontiers Media S.A., 2022.
Publication Year: 2022
Collection: LCC:Microbiology
Subject Terms: microbial sulfide oxidation, anaerobic oxidation of methane, hypoxia, marine sediments, sulfate reduction rates, sedimentary microbial community, Microbiology, QR1-502
More Details: Anthropogenic activities are modifying the oceanic environment rapidly and are causing ocean warming and deoxygenation, affecting biodiversity, productivity, and biogeochemical cycling. In coastal sediments, anaerobic organic matter degradation essentially fuels the production of hydrogen sulfide and methane. The release of these compounds from sediments is detrimental for the (local) environment and entails socio-economic consequences. Therefore, it is vital to understand which microbes catalyze the re-oxidation of these compounds under environmental dynamics, thereby mitigating their release to the water column. Here we use the seasonally dynamic Boknis Eck study site (SW Baltic Sea), where bottom waters annually fall hypoxic or anoxic after the summer months, to extrapolate how the microbial community and its activity reflects rising temperatures and deoxygenation. During October 2018, hallmarked by warmer bottom water and following a hypoxic event, modeled sulfide and methane production and consumption rates are higher than in March at lower temperatures and under fully oxic bottom water conditions. The microbial populations catalyzing sulfide and methane metabolisms are found in shallower sediment zones in October 2018 than in March 2019. DNA-and RNA profiling of sediments indicate a shift from primarily organotrophic to (autotrophic) sulfide oxidizing Bacteria, respectively. Previous studies using data collected over decades demonstrate rising temperatures, decreasing eutrophication, lower primary production and thus less fresh organic matter transported to the Boknis Eck sediments. Elevated temperatures are known to stimulate methanogenesis, anaerobic oxidation of methane, sulfate reduction and essentially microbial sulfide consumption, likely explaining the shift to a phylogenetically more diverse sulfide oxidizing community based on RNA.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1664-302X
65049152
Relation: https://www.frontiersin.org/articles/10.3389/fmicb.2022.1096062/full; https://doaj.org/toc/1664-302X
DOI: 10.3389/fmicb.2022.1096062
Access URL: https://doaj.org/article/65049152647a410baba9b5c83f559f81
Accession Number: edsdoj.65049152647a410baba9b5c83f559f81
Database: Directory of Open Access Journals
More Details
ISSN:1664302X
65049152
DOI:10.3389/fmicb.2022.1096062
Published in:Frontiers in Microbiology
Language:English