Bibliographic Details
Title: |
Methoxyhispolon Methyl Ether, a Hispolon Analog, Thwarts the SRC/STAT3/BCL-2 Axis to Provoke Human Triple-Negative Breast Cancer Cell Apoptosis In Vitro |
Authors: |
Chih-Pin Liao, Ya-Chu Hsieh, Chien-Hsing Lu, Wen-Chi Dai, Wei-Ting Yang, Kur-Ta Cheng, Modukuri V. Ramani, Gottumukkala V. Subbaraju, Chia-Che Chang |
Source: |
Biomedicines, Vol 11, Iss 10, p 2742 (2023) |
Publisher Information: |
MDPI AG, 2023. |
Publication Year: |
2023 |
Collection: |
LCC:Biology (General) |
Subject Terms: |
methoxyhispolon methyl ether, hispolon, SRC, STAT3, BCL-2, apoptosis, Biology (General), QH301-705.5 |
More Details: |
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with few treatment options. A promising TNBC treatment approach is targeting the oncogenic signaling pathways pivotal to TNBC initiation and progression. Deregulated activation of signal transducer and activator of transcription 3 (STAT3) is fundamental to driving TNBC malignant transformation, highlighting STAT3 as a promising TNBC therapeutic target. Methoxyhispolon Methyl Ether (MHME) is an analog of Hispolon, an anti-cancer polyphenol found in the medicinal mushroom Phellinus linteus. Still, MHME’s anti-cancer effects and mechanisms remain unknown. Herein, we present the first report about MHME’s anti-TNBC effect and its action mechanism. We first revealed that MHME is proapoptotic and cytotoxic against human TNBC cell lines HS578T, MDA-MB-231, and MDA-MB-463 and displayed a more potent cytotoxicity than Hispolon’s. Mechanistically, MHME suppressed both constitutive and interleukin 6 (IL-6)-induced activation of STAT3 represented by the extent of tyrosine 705-phosphorylated STAT3 (p-STAT3). Notably, MHME-evoked apoptosis and clonogenicity impairment were abrogated in TNBC cells overexpressing a dominant-active mutant of STAT3 (STAT3-C); supporting the blockade of STAT3 activation is an integral mechanism of MHME’s cytotoxic action on TNBC cells. Moreover, MHME downregulated BCL-2 in a STAT3-dependent manner, and TNBC cells overexpressing BCL-2 were refractory to MHME-induced apoptosis, indicating that BCL-2 downregulation is responsible for MHME’s proapoptotic effect on TNBC cells. Finally, MHME suppressed SRC activation, while v-src overexpression rescued p-STAT3 levels and downregulated apoptosis in MHME-treated TNBC cells. Collectively, we conclude that MHME provokes TNBC cell apoptosis through the blockade of the SRC/STAT3/BCL-2 pro-survival axis. Our findings suggest the potential of applying MHME as a TNBC chemotherapy agent. |
Document Type: |
article |
File Description: |
electronic resource |
Language: |
English |
ISSN: |
2227-9059 |
Relation: |
https://www.mdpi.com/2227-9059/11/10/2742; https://doaj.org/toc/2227-9059 |
DOI: |
10.3390/biomedicines11102742 |
Access URL: |
https://doaj.org/article/63c2992297f34594adfea63be5d136ac |
Accession Number: |
edsdoj.63c2992297f34594adfea63be5d136ac |
Database: |
Directory of Open Access Journals |