Are the European reference networks for rare diseases ready to embrace machine learning? A mixed-methods study

Bibliographic Details
Title: Are the European reference networks for rare diseases ready to embrace machine learning? A mixed-methods study
Authors: Georgi Iskrov, Ralitsa Raycheva, Kostadin Kostadinov, Sandra Gillner, Carl Rudolf Blankart, Edith Sky Gross, Gulcin Gumus, Elena Mitova, Stefan Stefanov, Georgi Stefanov, Rumen Stefanov
Source: Orphanet Journal of Rare Diseases, Vol 19, Iss 1, Pp 1-19 (2024)
Publisher Information: BMC, 2024.
Publication Year: 2024
Collection: LCC:Medicine
Subject Terms: Rare diseases, Machine learning, Artificial intelligence, European reference networks, Diagnosis, Diagnostic delay, Medicine
More Details: Abstract Background The delay in diagnosis for rare disease (RD) patients is often longer than for patients with common diseases. Machine learning (ML) technologies have the potential to speed up and increase the precision of diagnosis in this population group. We aim to explore the expectations and experiences of the members of the European Reference Networks (ERNs) for RDs with those technologies and their potential for application. Methods We used a mixed-methods approach with an online survey followed by a focus group discussion. Our study targeted primarily medical professionals but also other individuals affiliated with any of the 24 ERNs. Results The online survey yielded 423 responses from ERN members. Participants reported a limited degree of knowledge of and experience with ML technologies. They considered improved diagnostic accuracy the most important potential benefit, closely followed by the synthesis of clinical information, and indicated the lack of training in these new technologies, which hinders adoption and implementation in routine care. Most respondents supported the option that ML should be an optional but recommended part of the diagnostic process for RDs. Most ERN members saw the use of ML limited to specialised units only in the next 5 years, where those technologies should be funded by public sources. Focus group discussions concluded that the potential of ML technologies is substantial and confirmed that the technologies will have an important impact on healthcare and RDs in particular. As ML technologies are not the core competency of health care professionals, participants deemed a close collaboration with developers necessary to ensure that results are valid and reliable. However, based on our results, we call for more research to understand other stakeholders’ opinions and expectations, including the views of patient organisations. Conclusions We found enthusiasm to implement and apply ML technologies, especially diagnostic tools in the field of RDs, despite the perceived lack of experience. Early dialogue and collaboration between health care professionals, developers, industry, policymakers, and patient associations seem to be crucial to building trust, improving performance, and ultimately increasing the willingness to accept diagnostics based on ML technologies.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1750-1172
Relation: https://doaj.org/toc/1750-1172
DOI: 10.1186/s13023-024-03047-7
Access URL: https://doaj.org/article/60151e265a674dd4adbee2045f553e37
Accession Number: edsdoj.60151e265a674dd4adbee2045f553e37
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:17501172
DOI:10.1186/s13023-024-03047-7
Published in:Orphanet Journal of Rare Diseases
Language:English