Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction.

Bibliographic Details
Title: Inhibiting DPP4 in a mouse model of HHT1 results in a shift towards regenerative macrophages and reduces fibrosis after myocardial infarction.
Authors: Calinda K E Dingenouts, Wineke Bakker, Kirsten Lodder, Karien C Wiesmeijer, Asja T Moerkamp, Janita A Maring, Helen M Arthur, Anke M Smits, Marie-José Goumans
Source: PLoS ONE, Vol 12, Iss 12, p e0189805 (2017)
Publisher Information: Public Library of Science (PLoS), 2017.
Publication Year: 2017
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: AimsHereditary Hemorrhagic Telangiectasia type-1 (HHT1) is a genetic vascular disorder caused by haploinsufficiency of the TGFβ co-receptor endoglin. Dysfunctional homing of HHT1 mononuclear cells (MNCs) towards the infarcted myocardium hampers cardiac recovery. HHT1-MNCs have elevated expression of dipeptidyl peptidase-4 (DPP4/CD26), which inhibits recruitment of CXCR4-expressing MNCs by inactivation of stromal cell-derived factor 1 (SDF1). We hypothesize that inhibiting DPP4 will restore homing of HHT1-MNCs to the infarcted heart and improve cardiac recovery.Methods and resultsAfter inducing myocardial infarction (MI), wild type (WT) and endoglin heterozygous (Eng+/-) mice were treated for 5 days with the DPP4 inhibitor Diprotin A (DipA). DipA increased the number of CXCR4+ MNCs residing in the infarcted Eng+/- hearts (Eng+/- 73.17±12.67 vs. Eng+/- treated 157.00±11.61, P = 0.0003) and significantly reduced infarct size (Eng+/- 46.60±9.33% vs. Eng+/- treated 27.02±3.04%, P = 0.03). Echocardiography demonstrated that DipA treatment slightly deteriorated heart function in Eng+/- mice. An increased number of capillaries (Eng+/- 61.63±1.43 vs. Eng+/- treated 74.30±1.74, P = 0.001) were detected in the infarct border zone whereas the number of arteries was reduced (Eng+/- 11.88±0.63 vs. Eng+/- treated 6.38±0.97, P = 0.003). Interestingly, while less M2 regenerative macrophages were present in Eng+/- hearts prior to DipA treatment, (WT 29.88±1.52% vs. Eng+/- 12.34±1.64%, PConclusionsIn this study, we demonstrate that systemic DPP4 inhibition restores the impaired MNC homing in Eng+/- animals post-MI, and enhances cardiac repair, which might be explained by restoring the balance between the inflammatory and regenerative macrophages present in the heart.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1932-6203
Relation: https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0189805
Access URL: https://doaj.org/article/5e61c32fbfbc40819382bae5a8ae2141
Accession Number: edsdoj.5e61c32fbfbc40819382bae5a8ae2141
Database: Directory of Open Access Journals
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0189805
Published in:PLoS ONE
Language:English