Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire

Bibliographic Details
Title: Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
Authors: Sylvester C. Okafor, Linjing Wei, Solomon Boamah, Le Zhang, Mamadou B. Diallo
Source: Canadian Journal of Remote Sensing, Vol 50, Iss 1 (2024)
Publisher Information: Taylor & Francis Group, 2024.
Publication Year: 2024
Collection: LCC:Environmental sciences
LCC:Technology
Subject Terms: Environmental sciences, GE1-350, Technology
More Details: Wheat head detection is essential in estimating the important characteristics of wheat. However, detecting wheat heads in images from different domains has been challenging due to variations in domain features and environmental conditions. This research aims to improve the robustness of wheat head detection in wheat images. A combination of Fourier domain adaptation (FDA), adaptive alpha beta gamma correction (AABG) and random guided filter (RGF) preprocessing methods was applied in this study. The authors utilized FDA to reduce variations between different domains by transforming an image into the Fourier domain, aligning its distribution with a randomly selected image of another domain. AABG adjusts image properties based on local statistics of the image patches, and RGF, a technique for edge-aware image filtering, was used as augmentation. An EfficientDet model was trained on the publicly available wheat dataset and the results were analyzed and compared to a baseline model. The FDA + RGF approach achieved an improved mean average precision (mAP) of 0.6534 compared to the baseline mAP of 0.6292. Our study can contribute to advancing wheat head detection techniques in agriculture, addressing factors like variations in wheat head appearance by focusing on improving domain variation through data dependent approaches.
Document Type: article
File Description: electronic resource
Language: English
French
ISSN: 1712-7971
07038992
Relation: https://doaj.org/toc/1712-7971
DOI: 10.1080/07038992.2024.2367479
Access URL: https://doaj.org/article/a5db1ad37b3b42a1b24693b0609bbbe4
Accession Number: edsdoj.5db1ad37b3b42a1b24693b0609bbbe4
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=17127971&ISBN=&volume=50&issue=1&date=20241201&spage=&pages=&title=Canadian Journal of Remote Sensing&atitle=Enhanced%20Wheat%20Head%20Detection%20in%20Images%20Using%20Fourier%20Domain%20Adaptation%20and%20Random%20Guided%20Filter%3A%20D%C3%A9tection%20am%C3%A9lior%C3%A9e%20des%20t%C3%AAtes%20de%20bl%C3%A9%20dans%20les%20images%20%C3%A0%20l%E2%80%99aide%20de%20l%E2%80%99adaptation%20du%20domaine%20Fourier%20et%20du%20filtre%20guid%C3%A9%20al%C3%A9atoire&aulast=Sylvester%20C.%20Okafor&id=DOI:10.1080/07038992.2024.2367479
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/a5db1ad37b3b42a1b24693b0609bbbe4
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.5db1ad37b3b42a1b24693b0609bbbe4
RelevancyScore: 1038
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1038.04321289063
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Sylvester+C%2E+Okafor%22">Sylvester C. Okafor</searchLink><br /><searchLink fieldCode="AR" term="%22Linjing+Wei%22">Linjing Wei</searchLink><br /><searchLink fieldCode="AR" term="%22Solomon+Boamah%22">Solomon Boamah</searchLink><br /><searchLink fieldCode="AR" term="%22Le+Zhang%22">Le Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Mamadou+B%2E+Diallo%22">Mamadou B. Diallo</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Canadian Journal of Remote Sensing, Vol 50, Iss 1 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Taylor & Francis Group, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Environmental sciences<br />LCC:Technology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Environmental+sciences%22">Environmental sciences</searchLink><br /><searchLink fieldCode="DE" term="%22GE1-350%22">GE1-350</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Wheat head detection is essential in estimating the important characteristics of wheat. However, detecting wheat heads in images from different domains has been challenging due to variations in domain features and environmental conditions. This research aims to improve the robustness of wheat head detection in wheat images. A combination of Fourier domain adaptation (FDA), adaptive alpha beta gamma correction (AABG) and random guided filter (RGF) preprocessing methods was applied in this study. The authors utilized FDA to reduce variations between different domains by transforming an image into the Fourier domain, aligning its distribution with a randomly selected image of another domain. AABG adjusts image properties based on local statistics of the image patches, and RGF, a technique for edge-aware image filtering, was used as augmentation. An EfficientDet model was trained on the publicly available wheat dataset and the results were analyzed and compared to a baseline model. The FDA + RGF approach achieved an improved mean average precision (mAP) of 0.6534 compared to the baseline mAP of 0.6292. Our study can contribute to advancing wheat head detection techniques in agriculture, addressing factors like variations in wheat head appearance by focusing on improving domain variation through data dependent approaches.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English<br />French
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1712-7971<br />07038992
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/1712-7971
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1080/07038992.2024.2367479
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/a5db1ad37b3b42a1b24693b0609bbbe4" linkWindow="_blank">https://doaj.org/article/a5db1ad37b3b42a1b24693b0609bbbe4</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.5db1ad37b3b42a1b24693b0609bbbe4
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.5db1ad37b3b42a1b24693b0609bbbe4
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1080/07038992.2024.2367479
    Languages:
      – Text: English
      – Text: French
    Subjects:
      – SubjectFull: Environmental sciences
        Type: general
      – SubjectFull: GE1-350
        Type: general
      – SubjectFull: Technology
        Type: general
    Titles:
      – TitleFull: Enhanced Wheat Head Detection in Images Using Fourier Domain Adaptation and Random Guided Filter: Détection améliorée des têtes de blé dans les images à l’aide de l’adaptation du domaine Fourier et du filtre guidé aléatoire
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Sylvester C. Okafor
      – PersonEntity:
          Name:
            NameFull: Linjing Wei
      – PersonEntity:
          Name:
            NameFull: Solomon Boamah
      – PersonEntity:
          Name:
            NameFull: Le Zhang
      – PersonEntity:
          Name:
            NameFull: Mamadou B. Diallo
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 12
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 17127971
            – Type: issn-print
              Value: 07038992
          Numbering:
            – Type: volume
              Value: 50
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Canadian Journal of Remote Sensing
              Type: main
ResultId 1