Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study.

Bibliographic Details
Title: Genetic variants associated with increased risk of malignant pleural mesothelioma: a genome-wide association study.
Authors: Giuseppe Matullo, Simonetta Guarrera, Marta Betti, Giovanni Fiorito, Daniela Ferrante, Floriana Voglino, Gemma Cadby, Cornelia Di Gaetano, Fabio Rosa, Alessia Russo, Ari Hirvonen, Elisabetta Casalone, Sara Tunesi, Marina Padoan, Mara Giordano, Anna Aspesi, Caterina Casadio, Francesco Ardissone, Enrico Ruffini, Pier Giacomo Betta, Roberta Libener, Roberto Guaschino, Ezio Piccolini, Monica Neri, Arthur W B Musk, Nicholas H de Klerk, Jennie Hui, John Beilby, Alan L James, Jenette Creaney, Bruce W Robinson, Sutapa Mukherjee, Lyle J Palmer, Dario Mirabelli, Donatella Ugolini, Stefano Bonassi, Corrado Magnani, Irma Dianzani
Source: PLoS ONE, Vol 8, Iss 4, p e61253 (2013)
Publisher Information: Public Library of Science (PLoS), 2013.
Publication Year: 2013
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: Asbestos exposure is the main risk factor for malignant pleural mesothelioma (MPM), a rare aggressive tumor. Nevertheless, only 5-17% of those exposed to asbestos develop MPM, suggesting the involvement of other environmental and genetic risk factors. To identify the genetic risk factors that may contribute to the development of MPM, we conducted a genome-wide association study (GWAS; 370,000 genotyped SNPs, 5 million imputed SNPs) in Italy, among 407 MPM cases and 389 controls with a complete history of asbestos exposure. A replication study was also undertaken and included 428 MPM cases and 1269 controls from Australia. Although no single marker reached the genome-wide significance threshold, several associations were supported by haplotype-, chromosomal region-, gene- and gene-ontology process-based analyses. Most of these SNPs were located in regions reported to harbor aberrant alterations in mesothelioma (SLC7A14, THRB, CEBP350, ADAMTS2, ETV1, PVT1 and MMP14 genes), causing at most a 2-3-fold increase in MPM risk. The Australian replication study showed significant associations in five of these chromosomal regions (3q26.2, 4q32.1, 7p22.2, 14q11.2, 15q14). Multivariate analysis suggested an independent contribution of 10 genetic variants, with an Area Under the ROC Curve (AUC) of 0.76 when only exposure and covariates were included in the model, and of 0.86 when the genetic component was also included, with a substantial increase of asbestos exposure risk estimation (odds ratio, OR: 45.28, 95% confidence interval, CI: 21.52-95.28). These results showed that genetic risk factors may play an additional role in the development of MPM, and that these should be taken into account to better estimate individual MPM risk in individuals who have been exposed to asbestos.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1932-6203
Relation: https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23626673/?tool=EBI; https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0061253
Access URL: https://doaj.org/article/c59f9e8438eb40d0bfcf0f040bac6049
Accession Number: edsdoj.59f9e8438eb40d0bfcf0f040bac6049
Database: Directory of Open Access Journals
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0061253
Published in:PLoS ONE
Language:English