Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization

Bibliographic Details
Title: Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization
Authors: Yang Yang, Kecheng Lu, Yu Wu, Yunhai Wang, Yi Cao
Source: Computational Visual Media, Vol 9, Iss 3, Pp 513-529 (2023)
Publisher Information: SpringerOpen, 2023.
Publication Year: 2023
Collection: LCC:Electronic computers. Computer science
Subject Terms: correlation-awareness, large-scale data, multi-block methods, probabilistic data summarization, Electronic computers. Computer science, QA75.5-76.95
More Details: Abstract In this paper, we propose a correlation-aware probabilistic data summarization technique to efficiently analyze and visualize large-scale multi-block volume data generated by massively parallel scientific simulations. The core of our technique is correlation modeling of distribution representations of adjacent data blocks using copula functions and accurate data value estimation by combining numerical information, spatial location, and correlation distribution using Bayes’ rule. This effectively preserves statistical properties without merging data blocks in different parallel computing nodes and repartitioning them, thus significantly reducing the computational cost. Furthermore, this enables reconstruction of the original data more accurately than existing methods. We demonstrate the effectiveness of our technique using six datasets, with the largest having one billion grid points. The experimental results show that our approach reduces the data storage cost by approximately one order of magnitude compared to state-of-the-art methods while providing a higher reconstruction accuracy at a lower computational cost.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2096-0433
2096-0662
Relation: https://doaj.org/toc/2096-0433; https://doaj.org/toc/2096-0662
DOI: 10.1007/s41095-022-0304-6
Access URL: https://doaj.org/article/e500bb84340944aca028768f64690009
Accession Number: edsdoj.500bb84340944aca028768f64690009
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4942B0A057A03F8CE7AE&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1007/s41095-022-0304-6
    Name: EDS - IEEE (s8985755)
    Category: fullText
    Text: Check IEEE Xplore for full text
    MouseOverText: Check IEEE Xplore for full text. A new window will open.
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20960433&ISBN=&volume=9&issue=3&date=20230301&spage=513&pages=513-529&title=Computational Visual Media&atitle=Correlation-aware%20probabilistic%20data%20summarization%20for%20large-scale%20multi-block%20scientific%20data%20visualization&aulast=Yang%20Yang&id=DOI:10.1007/s41095-022-0304-6
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/e500bb84340944aca028768f64690009
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.500bb84340944aca028768f64690009
RelevancyScore: 986
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 986.003051757813
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yang+Yang%22">Yang Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Kecheng+Lu%22">Kecheng Lu</searchLink><br /><searchLink fieldCode="AR" term="%22Yu+Wu%22">Yu Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Yunhai+Wang%22">Yunhai Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Yi+Cao%22">Yi Cao</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Computational Visual Media, Vol 9, Iss 3, Pp 513-529 (2023)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: SpringerOpen, 2023.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Electronic computers. Computer science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22correlation-awareness%22">correlation-awareness</searchLink><br /><searchLink fieldCode="DE" term="%22large-scale+data%22">large-scale data</searchLink><br /><searchLink fieldCode="DE" term="%22multi-block+methods%22">multi-block methods</searchLink><br /><searchLink fieldCode="DE" term="%22probabilistic+data+summarization%22">probabilistic data summarization</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+computers%2E+Computer+science%22">Electronic computers. Computer science</searchLink><br /><searchLink fieldCode="DE" term="%22QA75%2E5-76%2E95%22">QA75.5-76.95</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract In this paper, we propose a correlation-aware probabilistic data summarization technique to efficiently analyze and visualize large-scale multi-block volume data generated by massively parallel scientific simulations. The core of our technique is correlation modeling of distribution representations of adjacent data blocks using copula functions and accurate data value estimation by combining numerical information, spatial location, and correlation distribution using Bayes’ rule. This effectively preserves statistical properties without merging data blocks in different parallel computing nodes and repartitioning them, thus significantly reducing the computational cost. Furthermore, this enables reconstruction of the original data more accurately than existing methods. We demonstrate the effectiveness of our technique using six datasets, with the largest having one billion grid points. The experimental results show that our approach reduces the data storage cost by approximately one order of magnitude compared to state-of-the-art methods while providing a higher reconstruction accuracy at a lower computational cost.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2096-0433<br />2096-0662
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2096-0433; https://doaj.org/toc/2096-0662
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/s41095-022-0304-6
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/e500bb84340944aca028768f64690009" linkWindow="_blank">https://doaj.org/article/e500bb84340944aca028768f64690009</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.500bb84340944aca028768f64690009
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.500bb84340944aca028768f64690009
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/s41095-022-0304-6
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 17
        StartPage: 513
    Subjects:
      – SubjectFull: correlation-awareness
        Type: general
      – SubjectFull: large-scale data
        Type: general
      – SubjectFull: multi-block methods
        Type: general
      – SubjectFull: probabilistic data summarization
        Type: general
      – SubjectFull: Electronic computers. Computer science
        Type: general
      – SubjectFull: QA75.5-76.95
        Type: general
    Titles:
      – TitleFull: Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yang Yang
      – PersonEntity:
          Name:
            NameFull: Kecheng Lu
      – PersonEntity:
          Name:
            NameFull: Yu Wu
      – PersonEntity:
          Name:
            NameFull: Yunhai Wang
      – PersonEntity:
          Name:
            NameFull: Yi Cao
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 03
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 20960433
            – Type: issn-print
              Value: 20960662
          Numbering:
            – Type: volume
              Value: 9
            – Type: issue
              Value: 3
          Titles:
            – TitleFull: Computational Visual Media
              Type: main
ResultId 1