Academic Journal
Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization
Title: | Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization |
---|---|
Authors: | Yang Yang, Kecheng Lu, Yu Wu, Yunhai Wang, Yi Cao |
Source: | Computational Visual Media, Vol 9, Iss 3, Pp 513-529 (2023) |
Publisher Information: | SpringerOpen, 2023. |
Publication Year: | 2023 |
Collection: | LCC:Electronic computers. Computer science |
Subject Terms: | correlation-awareness, large-scale data, multi-block methods, probabilistic data summarization, Electronic computers. Computer science, QA75.5-76.95 |
More Details: | Abstract In this paper, we propose a correlation-aware probabilistic data summarization technique to efficiently analyze and visualize large-scale multi-block volume data generated by massively parallel scientific simulations. The core of our technique is correlation modeling of distribution representations of adjacent data blocks using copula functions and accurate data value estimation by combining numerical information, spatial location, and correlation distribution using Bayes’ rule. This effectively preserves statistical properties without merging data blocks in different parallel computing nodes and repartitioning them, thus significantly reducing the computational cost. Furthermore, this enables reconstruction of the original data more accurately than existing methods. We demonstrate the effectiveness of our technique using six datasets, with the largest having one billion grid points. The experimental results show that our approach reduces the data storage cost by approximately one order of magnitude compared to state-of-the-art methods while providing a higher reconstruction accuracy at a lower computational cost. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2096-0433 2096-0662 |
Relation: | https://doaj.org/toc/2096-0433; https://doaj.org/toc/2096-0662 |
DOI: | 10.1007/s41095-022-0304-6 |
Access URL: | https://doaj.org/article/e500bb84340944aca028768f64690009 |
Accession Number: | edsdoj.500bb84340944aca028768f64690009 |
Database: | Directory of Open Access Journals |
FullText | Links: – Type: other Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4942B0A057A03F8CE7AE&Show=Object Text: Availability: 0 CustomLinks: – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1007/s41095-022-0304-6 Name: EDS - IEEE (s8985755) Category: fullText Text: Check IEEE Xplore for full text MouseOverText: Check IEEE Xplore for full text. A new window will open. – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20960433&ISBN=&volume=9&issue=3&date=20230301&spage=513&pages=513-529&title=Computational Visual Media&atitle=Correlation-aware%20probabilistic%20data%20summarization%20for%20large-scale%20multi-block%20scientific%20data%20visualization&aulast=Yang%20Yang&id=DOI:10.1007/s41095-022-0304-6 Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/e500bb84340944aca028768f64690009 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.500bb84340944aca028768f64690009 RelevancyScore: 986 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 986.003051757813 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Yang+Yang%22">Yang Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Kecheng+Lu%22">Kecheng Lu</searchLink><br /><searchLink fieldCode="AR" term="%22Yu+Wu%22">Yu Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Yunhai+Wang%22">Yunhai Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Yi+Cao%22">Yi Cao</searchLink> – Name: TitleSource Label: Source Group: Src Data: Computational Visual Media, Vol 9, Iss 3, Pp 513-529 (2023) – Name: Publisher Label: Publisher Information Group: PubInfo Data: SpringerOpen, 2023. – Name: DatePubCY Label: Publication Year Group: Date Data: 2023 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Electronic computers. Computer science – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22correlation-awareness%22">correlation-awareness</searchLink><br /><searchLink fieldCode="DE" term="%22large-scale+data%22">large-scale data</searchLink><br /><searchLink fieldCode="DE" term="%22multi-block+methods%22">multi-block methods</searchLink><br /><searchLink fieldCode="DE" term="%22probabilistic+data+summarization%22">probabilistic data summarization</searchLink><br /><searchLink fieldCode="DE" term="%22Electronic+computers%2E+Computer+science%22">Electronic computers. Computer science</searchLink><br /><searchLink fieldCode="DE" term="%22QA75%2E5-76%2E95%22">QA75.5-76.95</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract In this paper, we propose a correlation-aware probabilistic data summarization technique to efficiently analyze and visualize large-scale multi-block volume data generated by massively parallel scientific simulations. The core of our technique is correlation modeling of distribution representations of adjacent data blocks using copula functions and accurate data value estimation by combining numerical information, spatial location, and correlation distribution using Bayes’ rule. This effectively preserves statistical properties without merging data blocks in different parallel computing nodes and repartitioning them, thus significantly reducing the computational cost. Furthermore, this enables reconstruction of the original data more accurately than existing methods. We demonstrate the effectiveness of our technique using six datasets, with the largest having one billion grid points. The experimental results show that our approach reduces the data storage cost by approximately one order of magnitude compared to state-of-the-art methods while providing a higher reconstruction accuracy at a lower computational cost. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2096-0433<br />2096-0662 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/2096-0433; https://doaj.org/toc/2096-0662 – Name: DOI Label: DOI Group: ID Data: 10.1007/s41095-022-0304-6 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/e500bb84340944aca028768f64690009" linkWindow="_blank">https://doaj.org/article/e500bb84340944aca028768f64690009</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.500bb84340944aca028768f64690009 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.500bb84340944aca028768f64690009 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1007/s41095-022-0304-6 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 17 StartPage: 513 Subjects: – SubjectFull: correlation-awareness Type: general – SubjectFull: large-scale data Type: general – SubjectFull: multi-block methods Type: general – SubjectFull: probabilistic data summarization Type: general – SubjectFull: Electronic computers. Computer science Type: general – SubjectFull: QA75.5-76.95 Type: general Titles: – TitleFull: Correlation-aware probabilistic data summarization for large-scale multi-block scientific data visualization Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Yang Yang – PersonEntity: Name: NameFull: Kecheng Lu – PersonEntity: Name: NameFull: Yu Wu – PersonEntity: Name: NameFull: Yunhai Wang – PersonEntity: Name: NameFull: Yi Cao IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 03 Type: published Y: 2023 Identifiers: – Type: issn-print Value: 20960433 – Type: issn-print Value: 20960662 Numbering: – Type: volume Value: 9 – Type: issue Value: 3 Titles: – TitleFull: Computational Visual Media Type: main |
ResultId | 1 |