Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning.

Bibliographic Details
Title: Mesoscale simulations predict the role of synergistic cerebellar plasticity during classical eyeblink conditioning.
Authors: Alice Geminiani, Claudia Casellato, Henk-Jan Boele, Alessandra Pedrocchi, Chris I De Zeeuw, Egidio D'Angelo
Source: PLoS Computational Biology, Vol 20, Iss 4, p e1011277 (2024)
Publisher Information: Public Library of Science (PLoS), 2024.
Publication Year: 2024
Collection: LCC:Biology (General)
Subject Terms: Biology (General), QH301-705.5
More Details: According to the motor learning theory by Albus and Ito, synaptic depression at the parallel fibre to Purkinje cells synapse (pf-PC) is the main substrate responsible for learning sensorimotor contingencies under climbing fibre control. However, recent experimental evidence challenges this relatively monopolistic view of cerebellar learning. Bidirectional plasticity appears crucial for learning, in which different microzones can undergo opposite changes of synaptic strength (e.g. downbound microzones-more likely depression, upbound microzones-more likely potentiation), and multiple forms of plasticity have been identified, distributed over different cerebellar circuit synapses. Here, we have simulated classical eyeblink conditioning (CEBC) using an advanced spiking cerebellar model embedding downbound and upbound modules that are subject to multiple plasticity rules. Simulations indicate that synaptic plasticity regulates the cascade of precise spiking patterns spreading throughout the cerebellar cortex and cerebellar nuclei. CEBC was supported by plasticity at the pf-PC synapses as well as at the synapses of the molecular layer interneurons (MLIs), but only the combined switch-off of both sites of plasticity compromised learning significantly. By differentially engaging climbing fibre information and related forms of synaptic plasticity, both microzones contributed to generate a well-timed conditioned response, but it was the downbound module that played the major role in this process. The outcomes of our simulations closely align with the behavioural and electrophysiological phenotypes of mutant mice suffering from cell-specific mutations that affect processing of their PC and/or MLI synapses. Our data highlight that a synergy of bidirectional plasticity rules distributed across the cerebellum can facilitate finetuning of adaptive associative behaviours at a high spatiotemporal resolution.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1553-734X
1553-7358
Relation: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011277&type=printable; https://doaj.org/toc/1553-734X; https://doaj.org/toc/1553-7358
DOI: 10.1371/journal.pcbi.1011277&type=printable
DOI: 10.1371/journal.pcbi.1011277
Access URL: https://doaj.org/article/4b567e9a741349cc97edf07de3261d4b
Accession Number: edsdoj.4b567e9a741349cc97edf07de3261d4b
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:1553734X
15537358
DOI:10.1371/journal.pcbi.1011277&type=printable
Published in:PLoS Computational Biology
Language:English