Machine learning outcome prediction using stress perfusion cardiac magnetic resonance reports and natural language processing of electronic health records

Bibliographic Details
Title: Machine learning outcome prediction using stress perfusion cardiac magnetic resonance reports and natural language processing of electronic health records
Authors: Ebraham Alskaf, Simon M. Frey, Cian M. Scannell, Avan Suinesiaputra, Dijana Vilic, Vlad Dinu, Pier Giorgio Masci, Divaka Perera, Alistair Young, Amedeo Chiribiri
Source: Informatics in Medicine Unlocked, Vol 44, Iss , Pp 101418- (2024)
Publisher Information: Elsevier, 2024.
Publication Year: 2024
Collection: LCC:Computer applications to medicine. Medical informatics
Subject Terms: Machine learning, Coronary artery disease, Cardiac magnetic resonance, Electronic health records, Outcome prediction, Natural language processing, Computer applications to medicine. Medical informatics, R858-859.7
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2352-9148
Relation: http://www.sciencedirect.com/science/article/pii/S2352914823002642; https://doaj.org/toc/2352-9148
DOI: 10.1016/j.imu.2023.101418
Access URL: https://doaj.org/article/4a26c01ee1e54fd9bb130535496fc171
Accession Number: edsdoj.4a26c01ee1e54fd9bb130535496fc171
Database: Directory of Open Access Journals
More Details
ISSN:23529148
DOI:10.1016/j.imu.2023.101418
Published in:Informatics in Medicine Unlocked
Language:English