A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle

Bibliographic Details
Title: A transcriptomic analysis of skeletal muscle tissues reveals promising candidate genes and pathways accountable for different daily weight gain in Hanwoo cattle
Authors: Sunirmal Sheet, Sun Sik Jang, Jae Hwan Kim, Woncheoul Park, Dahye Kim
Source: Scientific Reports, Vol 14, Iss 1, Pp 1-18 (2024)
Publisher Information: Nature Portfolio, 2024.
Publication Year: 2024
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: Abstract Cattle traits like average daily weight gain (ADG) greatly impact profitability. Selecting based on ADG considering genetic variability can lead to economic and genetic advancements in cattle breeding. This study aimed to unravel genetic influences on ADG variation in Hanwoo cattle at the skeletal muscle transcriptomic level. RNA sequencing was conducted on longissimus dorsi (LD), semimembranosus (SB), and psoas major (PM) muscles of 14 steers assigned to same feed, grouped by low (≤ 0.71 kg) and high (≥ 0.77 kg) ADG. At P ≤ 0.05 and log2fold > 1.5, the distinct pattern of gene expression was identified with 184, 172, and 210 differentially expressed genes in LD, SB, and PM muscles, respectively. Tissue-specific responses to ADG variation were evident, with myogenesis and differentiation associated JAK-STAT signaling pathway and prolactin signaling pathways enriched in LD and SB muscles, while adipogenesis-related PPAR signaling pathways were enriched in PM muscle. Key hub genes (AXIN2, CDKN1A, MYC, PTGS2, FZD5, SPP1) were upregulated and functionally significant in muscle growth and differentiation. Notably, DPP6, CDKN1A, and FZD5 emerged as possible candidate genes linked to ADG variation. These findings enhance our understanding of genetic factors behind ADG variation in Hanwoo cattle, illuminating skeletal muscle mechanisms influencing ADG.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2045-2322
Relation: https://doaj.org/toc/2045-2322
DOI: 10.1038/s41598-023-51037-9
Access URL: https://doaj.org/article/4819008e0a5d489ab81366bba0bccbe4
Accession Number: edsdoj.4819008e0a5d489ab81366bba0bccbe4
Database: Directory of Open Access Journals
Full text is not displayed to guests.
More Details
ISSN:20452322
DOI:10.1038/s41598-023-51037-9
Published in:Scientific Reports
Language:English