Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.

Bibliographic Details
Title: Quantifying the Carbon Balance of Forest Restoration and Wildfire under Projected Climate in the Fire-Prone Southwestern US.
Authors: Matthew D Hurteau
Source: PLoS ONE, Vol 12, Iss 1, p e0169275 (2017)
Publisher Information: Public Library of Science (PLoS), 2017.
Publication Year: 2017
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: Climate projections for the southwestern US suggest a warmer, drier future and have the potential to impact forest carbon (C) sequestration and post-fire C recovery. Restoring forest structure and surface fire regimes initially decreases total ecosystem carbon (TEC), but can stabilize the remaining C by moderating wildfire behavior. Previous research has demonstrated that fire maintained forests can store more C over time than fire suppressed forests in the presence of wildfire. However, because the climate future is uncertain, I sought to determine the efficacy of forest management to moderate fire behavior and its effect on forest C dynamics under current and projected climate. I used the LANDIS-II model to simulate carbon dynamics under early (2010-2019), mid (2050-2059), and late (2090-2099) century climate projections for a ponderosa pine (Pinus ponderosa) dominated landscape in northern Arizona. I ran 100-year simulations with two different treatments (control, thin and burn) and a 1 in 50 chance of wildfire occurring. I found that control TEC had a consistent decline throughout the simulation period, regardless of climate. Thin and burn TEC increased following treatment implementation and showed more differentiation than the control in response to climate, with late-century climate having the lowest TEC. Treatment efficacy, as measured by mean fire severity, was not impacted by climate. Fire effects were evident in the cumulative net ecosystem exchange (NEE) for the different treatments. Over the simulation period, 32.8-48.9% of the control landscape was either C neutral or a C source to the atmosphere and greater than 90% of the thin and burn landscape was a moderate C sink. These results suggest that in southwestern ponderosa pine, restoring forest structure and surface fire regimes provides a reasonable hedge against the uncertainty of future climate change for maintaining the forest C sink.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1932-6203
Relation: http://europepmc.org/articles/PMC5207529?pdf=render; https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0169275
Access URL: https://doaj.org/article/4236b36e863749e4a3b926570c776345
Accession Number: edsdoj.4236b36e863749e4a3b926570c776345
Database: Directory of Open Access Journals
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0169275
Published in:PLoS ONE
Language:English