Academic Journal
Nonlinear optical property measurements of rhenium diselenide used for ultrafast fiber laser mode-locking at 1.9 μm
Title: | Nonlinear optical property measurements of rhenium diselenide used for ultrafast fiber laser mode-locking at 1.9 μm |
---|---|
Authors: | Jinho Lee, Suhyoung Kwon, Taeyoon Kim, Junha Jung, Luming Zhao, Ju Han Lee |
Source: | Scientific Reports, Vol 11, Iss 1, Pp 1-11 (2021) |
Publisher Information: | Nature Portfolio, 2021. |
Publication Year: | 2021 |
Collection: | LCC:Medicine LCC:Science |
Subject Terms: | Medicine, Science |
More Details: | Abstract An experimental investigation into the nonlinear optical properties of rhenium diselenide (ReSe2) was conducted at a wavelength of 1.9 μm using the open-aperture and closed-aperture Z-scan techniques for the nonlinear optical coefficient (β) and nonlinear refractive index (n 2) of ReSe2, respectively. β and n 2 measured at 1.9 μm were ~ − 11.3 × 103 cm/GW and ~ − 6.2 × 10–2 cm2/GW, respectively, which to the best of our knowledge, are the first reported measurements for ReSe2 in the 1.9-μm spectral region. The electronic band structures of both ReSe2 and its defective structures were also calculated via the Perdew–Becke–Erzenhof functional to better understand their absorption properties. A saturable absorber (SA) was subsequently fabricated to demonstrate the usefulness of ReSe2 for implementing a practical nonlinear optical device at 1.9 μm. The 1.9-μm SA exhibited a modulation depth of ~ 8% and saturation intensity of ~ 11.4 MW/cm2. The successful use of the ReSe2-based SA for mode-locking of a thulium–holmium (Tm–Ho) co-doped fiber ring cavity was achieved with output pulses of ~ 840 fs at 1927 nm. We believe that the mode-locking was achieved through a hybrid mechanism of saturable absorption and nonlinear polarization rotation. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-021-88735-1 |
Access URL: | https://doaj.org/article/41b05bc72a024019bb13f44d5ce0e4ce |
Accession Number: | edsdoj.41b05bc72a024019bb13f44d5ce0e4ce |
Database: | Directory of Open Access Journals |
Full text is not displayed to guests. | Login for full access. |
ISSN: | 20452322 |
---|---|
DOI: | 10.1038/s41598-021-88735-1 |
Published in: | Scientific Reports |
Language: | English |