Oncogenic Gata1 causes stage-specific megakaryocyte differentiation delay

Bibliographic Details
Title: Oncogenic Gata1 causes stage-specific megakaryocyte differentiation delay
Authors: Gaëtan Juban, Nathalie Sakakini, Hedia Chagraoui, David Cruz Hernandez, Qian Cheng, Kelly Soady, Bilyana Stoilova, Catherine Garnett, Dominic Waithe, Georg Otto, Jessica Doondeea, Batchimeg Usukhbayar, Elena Karkoulia, Maria Alexiou, John Strouboulis, Edward Morrissey, Irene Roberts, Catherine Porcher, Paresh Vyas
Source: Haematologica, Vol 106, Iss 4 (2020)
Publisher Information: Ferrata Storti Foundation, 2020.
Publication Year: 2020
Collection: LCC:Diseases of the blood and blood-forming organs
Subject Terms: Diseases of the blood and blood-forming organs, RC633-647.5
More Details: The megakaryocyte/erythroid Transient Myeloproliferative Disorder (TMD) in newborns with Down Syndrome (DS) occurs when N-terminal truncating mutations of the hemopoietic transcription factor GATA1, that produce GATA1short protein (GATA1s), are acquired early in development. Prior work has shown that murine GATA1s, by itself, causes a transient yolk sac myeloproliferative disorder. However, it is unclear where in the hemopoietic cellular hierarchy GATA1s exerts its effects to produce this myeloproliferative state. Here, through a detailed examination of hemopoiesis from murine GATA1s ES cells and GATA1s embryos we define defects in erythroid and megakaryocytic differentiation that occur relatively late in hemopoiesis. GATA1s causes an arrest late in erythroid differentiation in vivo, and even more profoundly in ES-cell derived cultures, with a marked reduction of Ter-119 cells and reduced erythroid gene expression. In megakaryopoiesis, GATA1s causes a differentiation delay at a specific stage, with accumulation of immature, kit-expressing CD41hi megakaryocytic cells. In this specific megakaryocytic compartment, there are increased numbers of GATA1s cells in S-phase of cell cycle and reduced number of apoptotic cells compared to GATA1 cells in the same cell compartment. There is also a delay in maturation of these immature GATA1s megakaryocytic lineage cells compared to GATA1 cells at the same stage of differentiation. Finally, even when GATA1s megakaryocytic cells mature, they mature aberrantly with altered megakaryocyte-specific gene expression and activity of the mature megakaryocyte enzyme, acetylcholinesterase. These studies pinpoint the hemopoietic compartment where GATA1s megakaryocyte myeloproliferation occurs, defining where molecular studies should now be focussed to understand the oncogenic action of GATA1s.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 0390-6078
1592-8721
Relation: https://haematologica.org/article/view/9780; https://doaj.org/toc/0390-6078; https://doaj.org/toc/1592-8721
DOI: 10.3324/haematol.2019.244541
Access URL: https://doaj.org/article/a3502b8fe415487d92a982f33c29512f
Accession Number: edsdoj.3502b8fe415487d92a982f33c29512f
Database: Directory of Open Access Journals
More Details
ISSN:03906078
15928721
DOI:10.3324/haematol.2019.244541
Published in:Haematologica
Language:English