Fixture Length and Primary Stability: An In Vitro Study on Polyurethane Foam

Bibliographic Details
Title: Fixture Length and Primary Stability: An In Vitro Study on Polyurethane Foam
Authors: Morena Petrini, Margherita Tumedei, Alessandro Cipollina, Simonetta D’Ercole, Maria Stella Di Carmine, Adriano Piattelli, Marco Re, Giovanna Iezzi
Source: Applied Sciences, Vol 12, Iss 5, p 2683 (2022)
Publisher Information: MDPI AG, 2022.
Publication Year: 2022
Collection: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
Subject Terms: primary stability, resonance frequency, insertion torque, polyurethane foam, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
More Details: (1) Background: Recently, novel dental implants that are characterized by different levels of surface roughness in the distinct parts of the fixture’s body have been introduced in the market. These surface characteristics could affect the primary stability of the implants. The aim of this in vitro study was to compare the primary stability of short and long implants, characterized by multiscale surface roughness, inserted on polyurethane blocks. The secondary aim was to understand if the implant length could be a crucial factor in the decision-making in immediate or rather than delayed loading protocol in the different bone densities. (2) Methods: A total of 20 cylindrical dental implants with a diameter of 5.0 mm were tested for the lengths 6.0 mm (short implants) versus 13.0 mm (long implants) on two different solid rigid polyurethane blocks (20 and 30 PCF). The primary stability was evaluated by measuring the insertion torque value (ITV), the removal torque (RTV), and the resonance frequency analysis RFA. (3) Results: The values of ITV, RTV, and RFA showed the same trend in all measurements. Long implants showed a significantly higher primary stability on 30 PCF blocks that present mechanical properties similar to high-density bone. On the contrary, no relevant differences were found on 20 PCF blocks, which mimic trabecular bone density. (4) Conclusions: The impact of fixture length on the primary stability of implants with multiscale surface roughness is significant in 30 PCF polyurethane corresponding to higher bone density, but not in lower ones.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2076-3417
Relation: https://www.mdpi.com/2076-3417/12/5/2683; https://doaj.org/toc/2076-3417
DOI: 10.3390/app12052683
Access URL: https://doaj.org/article/3142eee03e6442a2ba8aa2e0c0a6480b
Accession Number: edsdoj.3142eee03e6442a2ba8aa2e0c0a6480b
Database: Directory of Open Access Journals
More Details
ISSN:20763417
DOI:10.3390/app12052683
Published in:Applied Sciences
Language:English