Academic Journal
Machine learning approaches to detect hepatocyte chromatin alterations from iron oxide nanoparticle exposure
Title: | Machine learning approaches to detect hepatocyte chromatin alterations from iron oxide nanoparticle exposure |
---|---|
Authors: | Jovana Paunovic Pantic, Danijela Vucevic, Tatjana Radosavljevic, Peter R. Corridon, Svetlana Valjarevic, Jelena Cumic, Ljubisa Bojic, Igor Pantic |
Source: | Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024) |
Publisher Information: | Nature Portfolio, 2024. |
Publication Year: | 2024 |
Collection: | LCC:Medicine LCC:Science |
Subject Terms: | Machine learning, Nucleus, Random forest, Gradient boosting, Toxicology, Medicine, Science |
More Details: | Abstract This study focuses on developing machine learning models to detect subtle alterations in hepatocyte chromatin organization due to Iron (II, III) oxide nanoparticle exposure, hypothesizing that exposure will significantly alter chromatin texture. A total of 2000 hepatocyte nuclear regions of interest (ROIs) from mouse liver tissue were analyzed, and for each ROI, 5 different parameters were calculated: Long Run Emphasis, Short Run Emphasis, Run Length Nonuniformity, and 2 wavelet coefficient energies obtained after the discrete wavelet transform. These parameters served as input for supervised machine learning models, specifically random forest and gradient boosting classifiers. The models demonstrated relatively robust performance in distinguishing hepatocyte chromatin structures belonging to the group exposed to IONPs from the controls. The study's findings suggest that iron oxide nanoparticles induce substantial changes in hepatocyte chromatin distribution and underscore the potential of AI techniques in advancing hepatocyte evaluation in physiological and pathological conditions. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-024-70559-4 |
Access URL: | https://doaj.org/article/c2a309d9088a4a0d80c8cb4976af1917 |
Accession Number: | edsdoj.2a309d9088a4a0d80c8cb4976af1917 |
Database: | Directory of Open Access Journals |
Full text is not displayed to guests. | Login for full access. |
ISSN: | 20452322 |
---|---|
DOI: | 10.1038/s41598-024-70559-4 |
Published in: | Scientific Reports |
Language: | English |