Global soil moisture data derived through machine learning trained with in-situ measurements

Bibliographic Details
Title: Global soil moisture data derived through machine learning trained with in-situ measurements
Authors: Sungmin O., Rene Orth
Source: Scientific Data, Vol 8, Iss 1, Pp 1-14 (2021)
Publisher Information: Nature Portfolio, 2021.
Publication Year: 2021
Collection: LCC:Science
Subject Terms: Science
More Details: Measurement(s) wetness of soil Technology Type(s) machine learning Factor Type(s) soil layer • temporal interval • geographic location Sample Characteristic - Environment soil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14790510
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2052-4463
Relation: https://doaj.org/toc/2052-4463
DOI: 10.1038/s41597-021-00964-1
Access URL: https://doaj.org/article/a2321a8be2714558afbe5e683daafb00
Accession Number: edsdoj.2321a8be2714558afbe5e683daafb00
Database: Directory of Open Access Journals
More Details
ISSN:20524463
DOI:10.1038/s41597-021-00964-1
Published in:Scientific Data
Language:English