Bibliographic Details
Title: |
Global soil moisture data derived through machine learning trained with in-situ measurements |
Authors: |
Sungmin O., Rene Orth |
Source: |
Scientific Data, Vol 8, Iss 1, Pp 1-14 (2021) |
Publisher Information: |
Nature Portfolio, 2021. |
Publication Year: |
2021 |
Collection: |
LCC:Science |
Subject Terms: |
Science |
More Details: |
Measurement(s) wetness of soil Technology Type(s) machine learning Factor Type(s) soil layer • temporal interval • geographic location Sample Characteristic - Environment soil Machine-accessible metadata file describing the reported data: https://doi.org/10.6084/m9.figshare.14790510 |
Document Type: |
article |
File Description: |
electronic resource |
Language: |
English |
ISSN: |
2052-4463 |
Relation: |
https://doaj.org/toc/2052-4463 |
DOI: |
10.1038/s41597-021-00964-1 |
Access URL: |
https://doaj.org/article/a2321a8be2714558afbe5e683daafb00 |
Accession Number: |
edsdoj.2321a8be2714558afbe5e683daafb00 |
Database: |
Directory of Open Access Journals |