Local-scale impact of wind energy farms on rare, endemic, and threatened plant species

Bibliographic Details
Title: Local-scale impact of wind energy farms on rare, endemic, and threatened plant species
Authors: Mihaela Urziceanu, Paulina Anastasiu, Laurentiu Rozylowicz, Tatiana Eugenia Sesan
Source: PeerJ, Vol 9, p e11390 (2021)
Publisher Information: PeerJ Inc., 2021.
Publication Year: 2021
Collection: LCC:Medicine
LCC:Biology (General)
Subject Terms: Wind farms, Endangered species, Biodiversity, Environmental impact, Protected areas, Medicine, Biology (General), QH301-705.5
More Details: Background Wind energy farms have become a popular solution to produce green energy worldwide. Their development within protected areas has increased dramatically in the past decade, and the effects on the rare, endemic and threatened plant species (i.e., protected plant species), essential for habitat conservation and management, are little known. Only a few studies directly quantify the impacts of wind energy farms on them. Our study analyzes the impact of wind energy farms on rare, endemic, and threatened plant species in steppic habitats and their recovery potential over a ten-year period on a wind energy farm within the Dealurile Agighiolului Natura 2000 site (Dobrogea Region, SE Romania). Methods We surveyed the rare, endemic, and threatened plant species within a radius of approximately 50 m around each of the 17 wind towers during the wind farm operational phase. We selected 34 plots to allow the investigation of two types of areas: (1) a disturbed area overlapping the technological platform, where the vegetation was removed before construction, and (2) an adjacent undisturbed area. To understand the effects of the wind energy farm on the rare, endemic, and threatened plant species diversity and the differences between the disturbed and undisturbed areas, we calculated under both conditions: (1) plant species richness; (2) sample-size-based rarefaction and extrapolation with Hill numbers parameterized by species richness; (3) non-metric multidimensional scaling of Jaccard dissimilarity index; (4) functional diversity; (5) beta-diversity (including replacement and nestedness of species). Results As a result of the disturbances caused by the wind energy farm’s development, we identified a sharp contrast between the diversity of rare, endemic, and threatened plants inhabiting disturbed and undisturbed areas near the wind towers. Our research showed that less than 40% of the total inventoried rare, endemic, and threatened species colonized the disturbed sites. Species turnover within undisturbed plots was higher than disturbed plots, implying that the plant community’s heterogeneity was high. However, a higher richness in rare, endemic, and threatened plant species was found in the plots around the wind towers in grasslands of primary type. Sample-size-based rarefaction and extrapolation with Hill numbers by observed species richness indicated an accurate estimation of species richness in disturbed habitats, demonstrating that recovery after wind energy farm construction was incomplete after ten years of low-intensity plant restoration and conservation activities. Thus, we consider that operating activities must be reconfigured to allow the complete recovery of the communities with rare, endemic, and threatened plant species.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2167-8359
Relation: https://peerj.com/articles/11390.pdf; https://peerj.com/articles/11390/; https://doaj.org/toc/2167-8359
DOI: 10.7717/peerj.11390
Access URL: https://doaj.org/article/ce2088158c45423c9b55a218ed509473
Accession Number: edsdoj.2088158c45423c9b55a218ed509473
Database: Directory of Open Access Journals
More Details
ISSN:21678359
DOI:10.7717/peerj.11390
Published in:PeerJ
Language:English