DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning

Bibliographic Details
Title: DeepZipper. II. Searching for Lensed Supernovae in Dark Energy Survey Data with Deep Learning
Authors: R. Morgan, B. Nord, K. Bechtol, A. Möller, W. G. Hartley, S. Birrer, S. J. González, M. Martinez, R. A. Gruendl, E. J. Buckley-Geer, A. J. Shajib, A. Carnero Rosell, C. Lidman, T. Collett, T. M. C. Abbott, M. Aguena, F. Andrade-Oliveira, J. Annis, D. Bacon, S. Bocquet, D. Brooks, D. L. Burke, M. Carrasco Kind, J. Carretero, F. J. Castander, C. Conselice, L. N. da Costa, M. Costanzi, J. De Vicente, S. Desai, P. Doel, S. Everett, I. Ferrero, B. Flaugher, D. Friedel, J. Frieman, J. García-Bellido, E. Gaztanaga, D. Gruen, G. Gutierrez, S. R. Hinton, D. L. Hollowood, K. Honscheid, K. Kuehn, N. Kuropatkin, O. Lahav, M. Lima, F. Menanteau, R. Miquel, A. Palmese, F. Paz-Chinchón, M. E. S. Pereira, A. Pieres, A. A. Plazas Malagón, J. Prat, M. Rodriguez-Monroy, A. K. Romer, A. Roodman, E. Sanchez, V. Scarpine, I. Sevilla-Noarbe, M. Smith, E. Suchyta, M. E. C. Swanson, G. Tarle, D. Thomas, T. N. Varga
Source: The Astrophysical Journal, Vol 943, Iss 1, p 19 (2023)
Publisher Information: IOP Publishing, 2023.
Publication Year: 2023
Collection: LCC:Astrophysics
Subject Terms: Strong gravitational lensing, Supernovae, Astrophysics, QB460-466
More Details: Gravitationally lensed supernovae (LSNe) are important probes of cosmic expansion, but they remain rare and difficult to find. Current cosmic surveys likely contain 5–10 LSNe in total while next-generation experiments are expected to contain several hundred to a few thousand of these systems. We search for these systems in observed Dark Energy Survey (DES) five year SN fields—10 3 sq. deg. regions of sky imaged in the griz bands approximately every six nights over five years. To perform the search, we utilize the DeepZipper approach: a multi-branch deep learning architecture trained on image-level simulations of LSNe that simultaneously learns spatial and temporal relationships from time series of images. We find that our method obtains an LSN recall of 61.13% and a false-positive rate of 0.02% on the DES SN field data. DeepZipper selected 2245 candidates from a magnitude-limited ( m _i < 22.5) catalog of 3,459,186 systems. We employ human visual inspection to review systems selected by the network and find three candidate LSNe in the DES SN fields.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1538-4357
Relation: https://doaj.org/toc/1538-4357
DOI: 10.3847/1538-4357/ac721b
Access URL: https://doaj.org/article/1e3b03e0187041ab9eb03e3e81559afa
Accession Number: edsdoj.1e3b03e0187041ab9eb03e3e81559afa
Database: Directory of Open Access Journals
More Details
ISSN:15384357
DOI:10.3847/1538-4357/ac721b
Published in:The Astrophysical Journal
Language:English