Data-driven models in fusion exhaust: AI methods and perspectives

Bibliographic Details
Title: Data-driven models in fusion exhaust: AI methods and perspectives
Authors: S. Wiesen, S. Dasbach, A. Kit, A.E. Jaervinen, A. Gillgren, A. Ho, A. Panera, D. Reiser, M. Brenzke, Y. Poels, E. Westerhof, V. Menkovski, G.F. Derks, P. Strand
Source: Nuclear Fusion, Vol 64, Iss 8, p 086046 (2024)
Publisher Information: IOP Publishing, 2024.
Publication Year: 2024
Collection: LCC:Nuclear and particle physics. Atomic energy. Radioactivity
Subject Terms: exhaust, modeling, machine learning, AI methods, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798
More Details: A review is given on the highlights of a scatter-shot approach of developing machine-learning methods and artificial neural networks based fast predictors for the application to fusion exhaust. The aim is to enable and facilitate optimized and improved modeling allowing more flexible integration of physics models in the light of extrapolations towards future fusion devices. The project encompasses various research objectives: (a) developments of surrogate model predictors for power & particle exhaust in fusion power plants; (b) assessments of surrogate models for time-dependent phenomena in the plasma-edge; (c) feasibility studies of micro–macro model discovery for plasma-facing components surface morphology & durability; and (d) enhancements of pedestal models & databases through interpolators and generators exploiting uncertainty quantification. Presented results demonstrate useful applications for machine-learning and artificial intelligence in fusion exhaust modeling schemes, enabling an unprecedented combination of both fast and accurate simulation.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1741-4326
0029-5515
Relation: https://doaj.org/toc/0029-5515
DOI: 10.1088/1741-4326/ad5a1d
Access URL: https://doaj.org/article/1812415a81664416b16d9d0446019781
Accession Number: edsdoj.1812415a81664416b16d9d0446019781
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=405DBD671E65D0DFDC7C&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://stacks.iop.org/1741-4326/64/086046
    Name: Institute of Physics
    Category: fullText
    Text: Full Text from the Institute of Physics
    MouseOverText: Full Text from the Institute of Physics
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=17414326&ISBN=&volume=64&issue=8&date=20240101&spage=086046&pages=086046-86046&title=Nuclear Fusion&atitle=Data-driven%20models%20in%20fusion%20exhaust%3A%20AI%20methods%20and%20perspectives&aulast=S.%20Wiesen&id=DOI:10.1088/1741-4326/ad5a1d
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/1812415a81664416b16d9d0446019781
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.1812415a81664416b16d9d0446019781
RelevancyScore: 970
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 970.377258300781
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Data-driven models in fusion exhaust: AI methods and perspectives
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22S%2E+Wiesen%22">S. Wiesen</searchLink><br /><searchLink fieldCode="AR" term="%22S%2E+Dasbach%22">S. Dasbach</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Kit%22">A. Kit</searchLink><br /><searchLink fieldCode="AR" term="%22A%2EE%2E+Jaervinen%22">A.E. Jaervinen</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Gillgren%22">A. Gillgren</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Ho%22">A. Ho</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Panera%22">A. Panera</searchLink><br /><searchLink fieldCode="AR" term="%22D%2E+Reiser%22">D. Reiser</searchLink><br /><searchLink fieldCode="AR" term="%22M%2E+Brenzke%22">M. Brenzke</searchLink><br /><searchLink fieldCode="AR" term="%22Y%2E+Poels%22">Y. Poels</searchLink><br /><searchLink fieldCode="AR" term="%22E%2E+Westerhof%22">E. Westerhof</searchLink><br /><searchLink fieldCode="AR" term="%22V%2E+Menkovski%22">V. Menkovski</searchLink><br /><searchLink fieldCode="AR" term="%22G%2EF%2E+Derks%22">G.F. Derks</searchLink><br /><searchLink fieldCode="AR" term="%22P%2E+Strand%22">P. Strand</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Nuclear Fusion, Vol 64, Iss 8, p 086046 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: IOP Publishing, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Nuclear and particle physics. Atomic energy. Radioactivity
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22exhaust%22">exhaust</searchLink><br /><searchLink fieldCode="DE" term="%22modeling%22">modeling</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22AI+methods%22">AI methods</searchLink><br /><searchLink fieldCode="DE" term="%22Nuclear+and+particle+physics%2E+Atomic+energy%2E+Radioactivity%22">Nuclear and particle physics. Atomic energy. Radioactivity</searchLink><br /><searchLink fieldCode="DE" term="%22QC770-798%22">QC770-798</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A review is given on the highlights of a scatter-shot approach of developing machine-learning methods and artificial neural networks based fast predictors for the application to fusion exhaust. The aim is to enable and facilitate optimized and improved modeling allowing more flexible integration of physics models in the light of extrapolations towards future fusion devices. The project encompasses various research objectives: (a) developments of surrogate model predictors for power & particle exhaust in fusion power plants; (b) assessments of surrogate models for time-dependent phenomena in the plasma-edge; (c) feasibility studies of micro–macro model discovery for plasma-facing components surface morphology & durability; and (d) enhancements of pedestal models & databases through interpolators and generators exploiting uncertainty quantification. Presented results demonstrate useful applications for machine-learning and artificial intelligence in fusion exhaust modeling schemes, enabling an unprecedented combination of both fast and accurate simulation.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1741-4326<br />0029-5515
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/0029-5515
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1088/1741-4326/ad5a1d
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/1812415a81664416b16d9d0446019781" linkWindow="_blank">https://doaj.org/article/1812415a81664416b16d9d0446019781</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.1812415a81664416b16d9d0446019781
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.1812415a81664416b16d9d0446019781
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1088/1741-4326/ad5a1d
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 1
        StartPage: 086046
    Subjects:
      – SubjectFull: exhaust
        Type: general
      – SubjectFull: modeling
        Type: general
      – SubjectFull: machine learning
        Type: general
      – SubjectFull: AI methods
        Type: general
      – SubjectFull: Nuclear and particle physics. Atomic energy. Radioactivity
        Type: general
      – SubjectFull: QC770-798
        Type: general
    Titles:
      – TitleFull: Data-driven models in fusion exhaust: AI methods and perspectives
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: S. Wiesen
      – PersonEntity:
          Name:
            NameFull: S. Dasbach
      – PersonEntity:
          Name:
            NameFull: A. Kit
      – PersonEntity:
          Name:
            NameFull: A.E. Jaervinen
      – PersonEntity:
          Name:
            NameFull: A. Gillgren
      – PersonEntity:
          Name:
            NameFull: A. Ho
      – PersonEntity:
          Name:
            NameFull: A. Panera
      – PersonEntity:
          Name:
            NameFull: D. Reiser
      – PersonEntity:
          Name:
            NameFull: M. Brenzke
      – PersonEntity:
          Name:
            NameFull: Y. Poels
      – PersonEntity:
          Name:
            NameFull: E. Westerhof
      – PersonEntity:
          Name:
            NameFull: V. Menkovski
      – PersonEntity:
          Name:
            NameFull: G.F. Derks
      – PersonEntity:
          Name:
            NameFull: P. Strand
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 17414326
            – Type: issn-print
              Value: 00295515
          Numbering:
            – Type: volume
              Value: 64
            – Type: issue
              Value: 8
          Titles:
            – TitleFull: Nuclear Fusion
              Type: main
ResultId 1