Academic Journal
Data-driven models in fusion exhaust: AI methods and perspectives
Title: | Data-driven models in fusion exhaust: AI methods and perspectives |
---|---|
Authors: | S. Wiesen, S. Dasbach, A. Kit, A.E. Jaervinen, A. Gillgren, A. Ho, A. Panera, D. Reiser, M. Brenzke, Y. Poels, E. Westerhof, V. Menkovski, G.F. Derks, P. Strand |
Source: | Nuclear Fusion, Vol 64, Iss 8, p 086046 (2024) |
Publisher Information: | IOP Publishing, 2024. |
Publication Year: | 2024 |
Collection: | LCC:Nuclear and particle physics. Atomic energy. Radioactivity |
Subject Terms: | exhaust, modeling, machine learning, AI methods, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798 |
More Details: | A review is given on the highlights of a scatter-shot approach of developing machine-learning methods and artificial neural networks based fast predictors for the application to fusion exhaust. The aim is to enable and facilitate optimized and improved modeling allowing more flexible integration of physics models in the light of extrapolations towards future fusion devices. The project encompasses various research objectives: (a) developments of surrogate model predictors for power & particle exhaust in fusion power plants; (b) assessments of surrogate models for time-dependent phenomena in the plasma-edge; (c) feasibility studies of micro–macro model discovery for plasma-facing components surface morphology & durability; and (d) enhancements of pedestal models & databases through interpolators and generators exploiting uncertainty quantification. Presented results demonstrate useful applications for machine-learning and artificial intelligence in fusion exhaust modeling schemes, enabling an unprecedented combination of both fast and accurate simulation. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 1741-4326 0029-5515 |
Relation: | https://doaj.org/toc/0029-5515 |
DOI: | 10.1088/1741-4326/ad5a1d |
Access URL: | https://doaj.org/article/1812415a81664416b16d9d0446019781 |
Accession Number: | edsdoj.1812415a81664416b16d9d0446019781 |
Database: | Directory of Open Access Journals |
FullText | Links: – Type: other Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=405DBD671E65D0DFDC7C&Show=Object Text: Availability: 0 CustomLinks: – Url: https://login.libproxy.scu.edu/login?url=http://stacks.iop.org/1741-4326/64/086046 Name: Institute of Physics Category: fullText Text: Full Text from the Institute of Physics MouseOverText: Full Text from the Institute of Physics – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=17414326&ISBN=&volume=64&issue=8&date=20240101&spage=086046&pages=086046-86046&title=Nuclear Fusion&atitle=Data-driven%20models%20in%20fusion%20exhaust%3A%20AI%20methods%20and%20perspectives&aulast=S.%20Wiesen&id=DOI:10.1088/1741-4326/ad5a1d Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/1812415a81664416b16d9d0446019781 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.1812415a81664416b16d9d0446019781 RelevancyScore: 970 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 970.377258300781 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Data-driven models in fusion exhaust: AI methods and perspectives – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22S%2E+Wiesen%22">S. Wiesen</searchLink><br /><searchLink fieldCode="AR" term="%22S%2E+Dasbach%22">S. Dasbach</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Kit%22">A. Kit</searchLink><br /><searchLink fieldCode="AR" term="%22A%2EE%2E+Jaervinen%22">A.E. Jaervinen</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Gillgren%22">A. Gillgren</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Ho%22">A. Ho</searchLink><br /><searchLink fieldCode="AR" term="%22A%2E+Panera%22">A. Panera</searchLink><br /><searchLink fieldCode="AR" term="%22D%2E+Reiser%22">D. Reiser</searchLink><br /><searchLink fieldCode="AR" term="%22M%2E+Brenzke%22">M. Brenzke</searchLink><br /><searchLink fieldCode="AR" term="%22Y%2E+Poels%22">Y. Poels</searchLink><br /><searchLink fieldCode="AR" term="%22E%2E+Westerhof%22">E. Westerhof</searchLink><br /><searchLink fieldCode="AR" term="%22V%2E+Menkovski%22">V. Menkovski</searchLink><br /><searchLink fieldCode="AR" term="%22G%2EF%2E+Derks%22">G.F. Derks</searchLink><br /><searchLink fieldCode="AR" term="%22P%2E+Strand%22">P. Strand</searchLink> – Name: TitleSource Label: Source Group: Src Data: Nuclear Fusion, Vol 64, Iss 8, p 086046 (2024) – Name: Publisher Label: Publisher Information Group: PubInfo Data: IOP Publishing, 2024. – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Nuclear and particle physics. Atomic energy. Radioactivity – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22exhaust%22">exhaust</searchLink><br /><searchLink fieldCode="DE" term="%22modeling%22">modeling</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22AI+methods%22">AI methods</searchLink><br /><searchLink fieldCode="DE" term="%22Nuclear+and+particle+physics%2E+Atomic+energy%2E+Radioactivity%22">Nuclear and particle physics. Atomic energy. Radioactivity</searchLink><br /><searchLink fieldCode="DE" term="%22QC770-798%22">QC770-798</searchLink> – Name: Abstract Label: Description Group: Ab Data: A review is given on the highlights of a scatter-shot approach of developing machine-learning methods and artificial neural networks based fast predictors for the application to fusion exhaust. The aim is to enable and facilitate optimized and improved modeling allowing more flexible integration of physics models in the light of extrapolations towards future fusion devices. The project encompasses various research objectives: (a) developments of surrogate model predictors for power & particle exhaust in fusion power plants; (b) assessments of surrogate models for time-dependent phenomena in the plasma-edge; (c) feasibility studies of micro–macro model discovery for plasma-facing components surface morphology & durability; and (d) enhancements of pedestal models & databases through interpolators and generators exploiting uncertainty quantification. Presented results demonstrate useful applications for machine-learning and artificial intelligence in fusion exhaust modeling schemes, enabling an unprecedented combination of both fast and accurate simulation. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 1741-4326<br />0029-5515 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/0029-5515 – Name: DOI Label: DOI Group: ID Data: 10.1088/1741-4326/ad5a1d – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/1812415a81664416b16d9d0446019781" linkWindow="_blank">https://doaj.org/article/1812415a81664416b16d9d0446019781</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.1812415a81664416b16d9d0446019781 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.1812415a81664416b16d9d0446019781 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1088/1741-4326/ad5a1d Languages: – Text: English PhysicalDescription: Pagination: PageCount: 1 StartPage: 086046 Subjects: – SubjectFull: exhaust Type: general – SubjectFull: modeling Type: general – SubjectFull: machine learning Type: general – SubjectFull: AI methods Type: general – SubjectFull: Nuclear and particle physics. Atomic energy. Radioactivity Type: general – SubjectFull: QC770-798 Type: general Titles: – TitleFull: Data-driven models in fusion exhaust: AI methods and perspectives Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: S. Wiesen – PersonEntity: Name: NameFull: S. Dasbach – PersonEntity: Name: NameFull: A. Kit – PersonEntity: Name: NameFull: A.E. Jaervinen – PersonEntity: Name: NameFull: A. Gillgren – PersonEntity: Name: NameFull: A. Ho – PersonEntity: Name: NameFull: A. Panera – PersonEntity: Name: NameFull: D. Reiser – PersonEntity: Name: NameFull: M. Brenzke – PersonEntity: Name: NameFull: Y. Poels – PersonEntity: Name: NameFull: E. Westerhof – PersonEntity: Name: NameFull: V. Menkovski – PersonEntity: Name: NameFull: G.F. Derks – PersonEntity: Name: NameFull: P. Strand IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2024 Identifiers: – Type: issn-print Value: 17414326 – Type: issn-print Value: 00295515 Numbering: – Type: volume Value: 64 – Type: issue Value: 8 Titles: – TitleFull: Nuclear Fusion Type: main |
ResultId | 1 |