Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells

Bibliographic Details
Title: Neonatal Mouse Gut Metabolites Influence Cryptosporidium parvum Infection in Intestinal Epithelial Cells
Authors: Kelli L. VanDussen, Lisa J. Funkhouser-Jones, Marianna E. Akey, Deborah A. Schaefer, Kevin Ackman, Michael W. Riggs, Thaddeus S. Stappenbeck, L. David Sibley
Source: mBio, Vol 11, Iss 6 (2020)
Publisher Information: American Society for Microbiology, 2020.
Publication Year: 2020
Collection: LCC:Microbiology
Subject Terms: 16S rRNA, Cryptosporidium parvum, enteric infection, essential nutrient, fatty acid, metabolite, Microbiology, QR1-502
More Details: ABSTRACT The protozoan parasite Cryptosporidium sp. is a leading cause of diarrheal disease in those with compromised or underdeveloped immune systems, particularly infants and toddlers in resource-poor localities. As an enteric pathogen, Cryptosporidium sp. invades the apical surface of intestinal epithelial cells, where it resides in close proximity to metabolites in the intestinal lumen. However, the effect of gut metabolites on susceptibility to Cryptosporidium infection remains largely unstudied. Here, we first identified which gut metabolites are prevalent in neonatal mice when they are most susceptible to Cryptosporidium parvum infection and then tested the isolated effects of these metabolites on C. parvum invasion and growth in intestinal epithelial cells. Our findings demonstrate that medium or long-chain saturated fatty acids inhibit C. parvum growth, perhaps by negatively affecting the streamlined metabolism in C. parvum, which is unable to synthesize fatty acids. Conversely, long-chain unsaturated fatty acids enhanced C. parvum invasion, possibly by modulating membrane fluidity. Hence, gut metabolites, either from diet or produced by the microbiota, influence C. parvum growth in vitro and may also contribute to the early susceptibility to cryptosporidiosis seen in young animals. IMPORTANCE Cryptosporidium sp. occupies a unique intracellular niche that exposes the parasite to both host cell contents and the intestinal lumen, including metabolites from the diet and produced by the microbiota. Both dietary and microbial products change over the course of early development and could contribute to the changes seen in susceptibility to cryptosporidiosis in humans and mice. Consistent with this model, we show that the immature gut metabolome influenced the growth of Cryptosporidium parvum in vitro. Interestingly, metabolites that significantly altered parasite growth were fatty acids, a class of molecules that Cryptosporidium sp. is unable to synthesize de novo. The enhancing effects of polyunsaturated fatty acids and the inhibitory effects of saturated fatty acids presented in this study may provide a framework for future studies into this enteric parasite’s interactions with exogenous fatty acids during the initial stages of infection.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2150-7511
Relation: https://doaj.org/toc/2150-7511
DOI: 10.1128/mBio.02582-20
Access URL: https://doaj.org/article/15ba3df73dfa42048c217995bef69455
Accession Number: edsdoj.15ba3df73dfa42048c217995bef69455
Database: Directory of Open Access Journals
More Details
ISSN:21507511
DOI:10.1128/mBio.02582-20
Published in:mBio
Language:English