Evidence for renoxification in the tropical marine boundary layer

Bibliographic Details
Title: Evidence for renoxification in the tropical marine boundary layer
Authors: C. Reed, M. J. Evans, L. R. Crilley, W. J. Bloss, T. Sherwen, K. A. Read, J. D. Lee, L. J. Carpenter
Source: Atmospheric Chemistry and Physics, Vol 17, Iss 6, Pp 4081-4092 (2017)
Publisher Information: Copernicus Publications, 2017.
Publication Year: 2017
Collection: LCC:Physics
LCC:Chemistry
Subject Terms: Physics, QC1-999, Chemistry, QD1-999
More Details: We present 2 years of NOx observations from the Cape Verde Atmospheric Observatory located in the tropical Atlantic boundary layer. We find that NOx mixing ratios peak around solar noon (at 20–30 pptV depending on season), which is counter to box model simulations that show a midday minimum due to OH conversion of NO2 to HNO3. Production of NOx via decomposition of organic nitrogen species and the photolysis of HNO3 appear insufficient to provide the observed noontime maximum. A rapid photolysis of nitrate aerosol to produce HONO and NO2, however, is able to simulate the observed diurnal cycle. This would make it the dominant source of NOx at this remote marine boundary layer site, overturning the previous paradigm according to which the transport of organic nitrogen species, such as PAN, is the dominant source. We show that observed mixing ratios (November–December 2015) of HONO at Cape Verde (∼ 3.5 pptV peak at solar noon) are consistent with this route for NOx production. Reactions between the nitrate radical and halogen hydroxides which have been postulated in the literature appear to improve the box model simulation of NOx. This rapid conversion of aerosol phase nitrate to NOx changes our perspective of the NOx cycling chemistry in the tropical marine boundary layer, suggesting a more chemically complex environment than previously thought.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1680-7316
1680-7324
Relation: http://www.atmos-chem-phys.net/17/4081/2017/acp-17-4081-2017.pdf; https://doaj.org/toc/1680-7316; https://doaj.org/toc/1680-7324
DOI: 10.5194/acp-17-4081-2017
Access URL: https://doaj.org/article/12582887c4ae4a1fbdc16bf0d974edc6
Accession Number: edsdoj.12582887c4ae4a1fbdc16bf0d974edc6
Database: Directory of Open Access Journals
More Details
ISSN:16807316
16807324
DOI:10.5194/acp-17-4081-2017
Published in:Atmospheric Chemistry and Physics
Language:English