Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms

Bibliographic Details
Title: Antimicrobial potential of known and novel probiotics on in vitro periodontitis biofilms
Authors: Wannes Van Holm, Rita Carvalho, Lize Delanghe, Tom Eilers, Naiera Zayed, Fabian Mermans, Kristel Bernaerts, Nico Boon, Ingmar Claes, Sarah Lebeer, Wim Teughels
Source: npj Biofilms and Microbiomes, Vol 9, Iss 1, Pp 1-12 (2023)
Publisher Information: Nature Portfolio, 2023.
Publication Year: 2023
Collection: LCC:Microbial ecology
Subject Terms: Microbial ecology, QR100-130
More Details: Abstract Several oral diseases are characterized by a shift within the oral microbiome towards a pathogenic, dysbiotic composition. Broad-spectrum antimicrobials are often part of patient care. However, because of the rising antibiotic resistance, alternatives are increasingly desirable. Alternatively, supplying beneficial species through probiotics is increasingly showing favorable results. Unfortunately, these probiotics are rarely evaluated comparatively. In this study, the in vitro effects of three known and three novel Lactobacillus strains, together with four novel Streptococcus salivarius strains were comparatively evaluated for antagonistic effects on proximal agar growth, antimicrobial properties of probiotic supernatant and the probiotic’s effects on in vitro periodontal biofilms. Strain-specific effects were observed as differences in efficacy between genera and differences within genera. While some of the Lactobacillus candidates were able to reduce the periodontal pathobiont A. actinomycetemcomitans, the S. salivarius strains were not. However, the S. salivarius strains were more effective against periodontal pathobionts P. intermedia, P. gingivalis, and F. nucleatum. Vexingly, most of the Lactobacillus strains also negatively affected the prevalence of commensal species within the biofilms, while this was lower for S. salivarius strains. Both within lactobacilli and streptococci, some strains showed significantly more inhibition of the pathobionts, indicating the importance of proper strain selection. Additionally, some species showed reductions in non-target species, which can result in unexpected and unexplored effects on the whole microbiome.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2055-5008
Relation: https://doaj.org/toc/2055-5008
DOI: 10.1038/s41522-023-00370-y
Access URL: https://doaj.org/article/a114db784f254f19af26d09c895de6d4
Accession Number: edsdoj.114db784f254f19af26d09c895de6d4
Database: Directory of Open Access Journals
More Details
ISSN:20555008
DOI:10.1038/s41522-023-00370-y
Published in:npj Biofilms and Microbiomes
Language:English