Arrhythmic Mitral Valve Prolapse Phenotype: An Unsupervised Machine-learning Analysis Using a Multi-center Registry

Bibliographic Details
Title: Arrhythmic Mitral Valve Prolapse Phenotype: An Unsupervised Machine-learning Analysis Using a Multi-center Registry
Authors: Stefano Figliozzi, MD, Ralph Kwame Akyea, PhD, Pedro M Lopes, MD, Sara Moura-Ferreira, MD, Lara Tondi, MD, Saima Mushtaq, MD, Stefano Censi, Anna Giulia Pavon, MD, Ilaria Bassi, Laura Galian, Arco J Teske, Domenico Filomena, Camilla Torlasco, Pierre Monney, MD, Viviana Maestrini, MD, PhD, Patrizia Pedrotti, MD, Bert Vandenberk, Angelo Squeri, MD, Massimo Lombardi, MD, Juerg Schwitter, MD, PhD, Giovanni Donato Aquaro, Amedeo Chiribiri, PhD, MB, FSCMR, José F Rodríguez Palomares, Lorenzo Monti, MD, Ali Yilmaz, Daniele Andreini, Anca Florian, Marco Francone, MD, PhD, Gianluca Pontone, MD, PhD, Joao Abecassis, MD, Tim Leiner, MD, PhD, Luigi P Badano, Jan Bogaert, MD, PhD, Georgios Georgiopoulos, MD, PhD, MSc, Pier Giorgio Masci, MD
Source: Journal of Cardiovascular Magnetic Resonance, Vol 26, Iss , Pp 100961- (2024)
Publisher Information: Elsevier, 2024.
Publication Year: 2024
Collection: LCC:Diseases of the circulatory (Cardiovascular) system
Subject Terms: Diseases of the circulatory (Cardiovascular) system, RC666-701
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1097-6647
Relation: http://www.sciencedirect.com/science/article/pii/S1097664724009529; https://doaj.org/toc/1097-6647
DOI: 10.1016/j.jocmr.2024.100961
Access URL: https://doaj.org/article/10e0f8ea20a84c62b0f4d0f32fa2b571
Accession Number: edsdoj.10e0f8ea20a84c62b0f4d0f32fa2b571
Database: Directory of Open Access Journals
More Details
ISSN:10976647
DOI:10.1016/j.jocmr.2024.100961
Published in:Journal of Cardiovascular Magnetic Resonance
Language:English