Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys.

Bibliographic Details
Title: Differential role of planar cell polarity gene Vangl2 in embryonic and adult mammalian kidneys.
Authors: Ida Derish, Jeremy K H Lee, Melanie Wong-King-Cheong, Sima Babayeva, Jillian Caplan, Vicki Leung, Chloe Shahinian, Michel Gravel, Michael R Deans, Philippe Gros, Elena Torban
Source: PLoS ONE, Vol 15, Iss 3, p e0230586 (2020)
Publisher Information: Public Library of Science (PLoS), 2020.
Publication Year: 2020
Collection: LCC:Medicine
LCC:Science
Subject Terms: Medicine, Science
More Details: Planar cell polarity (PCP) pathway is crucial for tissue morphogenesis. Mutations in PCP genes cause multi-organ anomalies including dysplastic kidneys. Defective PCP signaling was postulated to contribute to cystogenesis in polycystic kidney disease. This work was undertaken to elucidate the role of the key PCP gene, Vangl2, in embryonic and postnatal renal tubules and ascertain whether its loss contributes to cyst formation and defective tubular function in mature animals. We generated mice with ubiquitous and collecting duct-restricted excision of Vangl2. We analyzed renal tubules in mutant and control mice at embryonic day E17.5 and postnatal days P1, P7, P30, P90, 6- and 9-month old animals. The collecting duct functions were analyzed in young and adult mutant and control mice. Loss of Vangl2 leads to profound tubular dilatation and microcysts in embryonic kidneys. Mechanistically, these abnormalities are caused by defective convergent extension (larger tubular cross-sectional area) and apical constriction (cuboidal cell shape and a reduction of activated actomyosin at the luminal surface). However, the embryonic tubule defects were rapidly resolved by Vangl2-independent mechanisms after birth. Normal collecting duct architecture and functions were found in young and mature animals. During embryogenesis, Vangl2 controls tubular size via convergent extension and apical constriction. However, rapidly after birth, PCP-dependent control of tubular size is switched to a PCP-independent regulatory mechanism. We conclude that loss of the Vangl2 gene is dispensable for tubular elongation and maintenance postnatally. It does not lead to cyst formation and is unlikely to contribute to polycystic kidney disease.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1932-6203
Relation: https://doaj.org/toc/1932-6203
DOI: 10.1371/journal.pone.0230586
Access URL: https://doaj.org/article/d0d10d5b6870448ca8b551765abfa1f2
Accession Number: edsdoj.0d10d5b6870448ca8b551765abfa1f2
Database: Directory of Open Access Journals
More Details
ISSN:19326203
DOI:10.1371/journal.pone.0230586
Published in:PLoS ONE
Language:English